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Abstract

Randomize-then-optimize (RTO) is widely used for sampling from posterior distribu-

tions in Bayesian inverse problems. However, RTO can be computationally intensive for

complexity problems due to repetitive evaluations of the expensive forward model and its

gradient. In this work, we present a novel goal-oriented deep neural networks (DNN) sur-

rogate approach to substantially reduce the computation burden of RTO. In particular,

we propose to drawn the training points for the DNN-surrogate from a local approximated

posterior distribution – yielding a flexible and efficient sampling algorithm that converges

to the direct RTO approach. We present a Bayesian inverse problem governed by elliptic

PDEs to demonstrate the computational accuracy and efficiency of our DNN-RTO ap-

proach, which shows that DNN-RTO can significantly outperform the traditional RTO.
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1. Introduction

The Bayesian approach provides a systematic framework for quantifying the uncertainty in

parameter estimations of inverse problems [14, 26]. In the Bayesian approach, one combine a

prior knowledge of the unknown parameters and the forward model to yield a posterior prob-

ability distribution, form which the statistic information of the unknown parameters can be

characterized. The main task of the Bayesian approach is to draw samples from the posterior

distributions, and then evaluate the associate statistic information, e.g., expectation, variance,

etc. Since analytical formulas of the posterior are in general not available, many numerical

sampling approaches such as Markov chain Monte Carlo (MCMC) methods [7] have been de-

veloped.

Nevertheless, the MCMC sampling scheme can be computationally challenging. Firstly,

each evaluation of the system output involves a forward model evaluation, and this is infeasible

if the model is expensive to evaluate. Secondly, the geometry of the posterior distribution may

admits complex features in the parametric space (such as local concentration). One polular
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way for reducing the computational complexity is to use the so-called surrogate approach: one

constructs a surrogate to the true model and samples from the posterior distribution induced

by the surrogate. In case the surrogate is computationally less expensive, one can dramatically

speed up the MCMC algorithms. Different surrogate approaches have been investigated in re-

cent years, for instance, projection-type reduced order models [1,9,18], polynomial chaos (PC)

based surrogates [20–22, 31, 32], and Gaussian process regression [15, 25, 27], to name a few.

Although the surrogate approach can be very effective when exploring low-dimensional distri-

butions, it can still be inefficient for high-dimensional distributions with local concentration [7].

In these cases, the effective sample size (ESS) tends to be very low. To address this challenge,

several strategies that combine the geometry information of the posterior (such as the gradient

and Hessian information) have been exploited to accelerate the convergence of MCMC, see,

e.g. [4, 11, 13, 17, 19]. We also mention recent progresses on adaptive multi-fidelity surrogate

approaches [33–35].

In this work, we propose a new approach that combines a deep neural networks (DNN) sur-

rogate and an optimization-based sampling approach for large-scale PDE constrained Bayesian

inverse problems. In particular, we focus on the randomize-then-optimize (RTO) approach

[2, 3, 30] which uses repeated solutions of a randomly perturbed optimization problem to pro-

duce samples from a non-Gaussian distribution (used as a Metropolis independence proposal).

Compared to the classical Metroplis-Hastings (MH) random walk algorithm, RTO admits higher

acceptance probability and lower sample auto-correlation even for high-dimensional problem-

s [2]. The main drawback of the original RTO lines in the repetitive evaluation of the forward

model and its gradient. To this end, we construct a DNN-based surrogate which makes the

optimization problems rather efficient to solve. Moreover, to obtain an accurate and efficient

DNN-surrogate, we propose to generate the training points from a local approximated posterior

distribution, and this makes the training procedure very efficient.

We next summarize the main features of our DNN-RTO approach:

• A new approach that combines RTO and a DNN-surrogate. The new approach is expected

to be promising for high dimensional problems.

• With the DNN-surrogate, the gradient information can be obtained efficiently by the

backward propagation, so that the associated optimization procedure can be efficiently

solved.

• We choose the training points from a local approximated posterior distribution, and this

makes the training procedure (for the DNN-surrogate) very efficient.

• We present numerical examples to demonstrate that the DNN-RTO outperforms the tra-

ditional RTO.

The rest of the paper is organized as follows. In the next section, we give a brief introduction

to the Bayesian inverse problems. In Section 3, we introduce the RTO algorithm. Details of our

new approach are presented in Section 4. In Section 5, we use two nonlinear inverse problems to

demonstrate the accuracy and efficiency of the new approach. Finally, we give some concluding

remarks in Section 6.


