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Abstract

We analyze the convergence of the weighted nonlocal Laplacian (WNLL) on the high

dimensional randomly distributed point cloud. Our analysis reveals the importance of the

scaling weight, µ ∼ |P |/|S| with |P | and |S| being the number of entire and labeled data,

respectively, in WNLL. The established result gives a theoretical foundation of the WNLL

for high dimensional data interpolation.
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1. Introduction

In this paper, we consider the convergence of the weighted nonlocal Laplacian (WNLL) on

high dimensional randomly distributed data. WNLL is proposed in [11] for high dimensional

point cloud interpolation, which successfully resolves the curse of dimensionality issue in the

classical basis function-based approaches. High dimensional point cloud interpolation is a fun-

damental problem in machine learning, which can be mathematically formulated as follows: Let

P = {p1, · · · ,pn} and S = {s1, · · · , sm} be two sets of points in R
d. Suppose u is a function

defined on the point cloud P̄ = P ∪ S, which is known only over the set S, and we denote the

function u as b(s) for any s ∈ S. We use interpolation methods, e.g. WNLL, to compute u

over the whole point cloud P̄ leveraging the given values over S.

Nonlocal Laplacian is widely used in nonlocal methods for image processing [2,3,6,7], and in

nonlocal Laplacian, the interpolating function is obtained by minimizing the following energy

functional

J (u) =
1

2

∑

x,y∈P̄

w(x,y)(u(x)− u(y))2, (1.1)

with the constraint

u(x) = b(x), x ∈ S. (1.2)

Here, w(x,y) is a given weight function, typically chosen to be Gaussian, i.e. w(x,y) =

exp(−‖x − y‖2/σ2) with σ > 0 being a hyperparameter, and ‖ · ‖ is the Euclidean norm in
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R
d. In graph theory and machine learning literature, nonlocal Laplacian is also called graph

Laplacian [4, 16].

Graph Laplacian works very well with a high labeling rate, i.e., there is a large portion of

labeled data. However, when the labeling rate is low, i.e. |S|/|P̄ | ≪ 1, the solution of the graph

Laplacian is found to be discontinuous at the labeled points [11,12]. WNLL is devised to fix the

issues related to the low-labeling rate, and in WNLL, the energy functional in (1.1) is modified

by adding the weight, |P̄ |
|S| , to balance the labeled and unlabeled terms, which resulting in

min
u

∑

x∈P





∑

y∈P̄

w(x,y)(u(x) − u(y))2



+
|P̄ |
|S|

∑

x∈S





∑

y∈P̄

w(x,y)(u(x)− u(y))2



 , (1.3)

with the constraint

u(x) = b(x), x ∈ S.

When the labeling rate is high, WNLL is close to graph Laplacian. However, when the labeling

rate is low, the specially designed weight forces the solution to be close to the given values near

the labeled points, such that the discontinuities are removed. Furthermore, The optimization

problem (1.3) is easy to solve numerically. With a symmetric weight function, i.e. w(x,y) =

w(y,x), the corresponding Euler-Lagrange equation of (1.3) is a simple linear system

2
∑

y∈P

w(x,y) (u(x)− u(y)) +

( |P |
|S| + 2

)

∑

y∈S

w(y,x)(u(x) − b(y)) = 0, x ∈ P,

u(x) = b(x), x ∈ S.

This linear system can be solved efficiently by the conjugate gradient iteration. The advantages

of the WNLL over the graph Laplacian have been shown evidently in image inpainting [11,12],

scientific data interpolation [15], and more recently deep learning [13].

1.1. Main Result

We consider the error of the WNLL in a model problem, where the whole computational

domain is set to be a k-dimensional closed manifold M embedded in R
d. The point cloud P ,

uniformly distributed on M, gives a discrete representation of M. Let D ⊂ M be a labeled

subset of M, and S is a uniform sample of D. In S, we have u(x) = b(x). An illustration of

the computational domain and the point cloud is shown in Fig. 1.1.

In WNLL, we solve the following linear system, (1.4), to extend the label function u to the

entire domain P .
∑

y∈P

Rδ(x,y) (uδ(x)− uδ(y)) + µ
∑

y∈S

Rδ(x,y)(uδ(x)− b(y)) = 0, x ∈ P, (1.4a)

uδ(x) = b(x), x ∈ S, (1.4b)

where Rδ(x,y) is kernel function given as

Rδ(x,y) = CδR

(‖x− y‖2
4δ2

)

, (1.5)

where Cδ = 1
ωkδk

with ωk is the volume of the unit ball in R
k. R : [0,+∞) → R is a kernel

functions satisfying the conditions listed in Assumption 1.1.


