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Abstract

For the five-point discrete formulae of directional derivatives in the finite point method,

overcoming the challenge resulted from scattered point sets and making full use of the ex-

plicit expressions and accuracy of the formulae, this paper obtains a number of theoretical

results: (1) a concise expression with definite meaning of the complicated directional differ-

ence coefficient matrix is presented, which characterizes the correlation between coefficients

and the connection between coefficients and scattered geometric characteristics; (2) various

expressions of the discriminant function for the solvability of numerical differentials along

with the estimation of its lower bound are given, which are the bases for selecting neigh-

boring points and making analysis; (3) the estimations of combinatorial elements and of

each element in the directional difference coefficient matrix are put out, which exclude the

existence of singularity. Finally, the theoretical analysis results are verified by numerical

calculations.

The results of this paper have strong regularity, which lay the foundation for further

research on the finite point method for solving partial differential equations.
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1. Introduction

The finite difference method for solving partial differential equations (PDEs) (see, e.g.,

[1–4]) was originated in the 1920s, which was constructed on regular grids in computational

domains. Due to the limitation of computational problems and conditions at that time, the

computational scale was often small, and the complexity was not high, so the method could

solve problems effectively. However, with the emergence of large and complex problems, the

traditional finite difference method on regular grids was facing enormous challenges. To settle

the matter, [1] and [5] proposed the method of dividing irregular mesh regions into regular sub-

regions, respectively. [6] considered the finite difference method on irregular sub-regions with

restricted topology. For irregular grids, [7] proposed a finite difference method with six-point

stencils earlier, which could give approximations up to second-order derivatives, but was often

troubled by singularity or ill-conditioning of numerical differentials.
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Thereafter, to overcome the singularity, some scholars proposed the generalized finite dif-

ference method by enlarging stencils [8–10], which enhanced the computational capability of

the finite difference method on irregular grids to a certain extent [11,12]. With insight into the

finite difference method, it is not difficult to find from the discrete process that it has properties

of meshless methods.

In recent years, many efforts have been devoted to generalize the traditional difference

method on scattered point sets. Most of them are based on a large number of neighboring

points to fit derivatives [13–16], while there are also a few jobs in which a small number of

neighbors are employed [17–19], however, none of them can address the issue of singularity or

ill-conditioning of numerical derivatives at the fundamental level. In addition, many scholars

have studied the difference method based on radial basis function (RBF) [20–24], which can be

also viewed as a generalization of the traditional difference method.

To sum up, these works on scattered point sets undoubtedly improve the computational

ability of the difference method, whereas scattered point sets also bring great difficulties to

the theoretical analysis of related methods. Compared with its wide applications, theoretical

results of meshless finite difference method are far from enough, especially for discrete analyses

of PDEs. At present, the few existing works are often limited on discrete points with special

distributions or on them only with a small number of discrete points near the boundary being

irregular [25, 26].

The finite point method [27] to be studied in this paper is the finite difference method based

on scattered point sets in irregular regions. In this method, only a few neighboring points

are required to give the discretization of differential operators with higher accuracy. For ex-

ample, in the two-dimensional case, given a discrete point, only 5 neighbors are demanded to

obtain second-order approximations for first-order derivatives and first-order approximations

for second-order derivatives. Above all, based on the analysis of the solvability conditions of

numerical derivatives, the method of selecting neighboring points is presented, and the soft-

ware module is formed, which can overcome the singularity problem of numerical derivatives

fundamentally. The explicit expression of derivative approximation is also derived, by which

some important theoretical results, such as convergence analysis for Poisson equation on scat-

tered point sets [28] and the compatibility of nonlinear diffusion operators [29] are obtained,

moreover, by which two-dimensional three-temperature energy equations in high temperature

plasma physics have also been successfully solved numerically [29]. This paper aims at making

a detailed analysis to give estimations of the numerical discrete formulae of directional deriva-

tives on scattered point sets, including the lower bound of absolute value of the discriminant

function for the solvability of numerical derivatives and the bounds of a series of coefficients.

These theoretical results are the key bases for further developing the theoretical research of

relevant methods.

The rest of the paper is arranged as follows: Section 2 gives some basic denotations; Section

3 discusses the structure of the directional difference coefficient matrix; Section 4 presents a

variety of expressions and estimations of the discriminant function for the solvability of numer-

ical differentials; Section 5 puts out analyses and estimation results of the directional difference

coefficient matrix; Section 6 validates the theoretical results by numerical examples. Finally,

the conclusions are drawn in Section 7.


