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Abstract

In this paper, the unconditional error estimates are presented for the time-dependent

Navier-Stokes equations by the bilinear-constant scheme. The corresponding optimal error

estimates for the velocity and the pressure are derived unconditionally, while the previous

works require certain time-step restrictions. The analysis is based on an iterated time-

discrete system, with which the error function is split into a temporal error and a spatial

error. The τ -independent (τ is the time stepsize) error estimate between the numerical

solution and the solution of the time-discrete system is proven by a rigorous analysis,

which implies that the numerical solution in L∞-norm is bounded. Thus optimal error

estimates can be obtained in a traditional way. Numerical results are provided to confirm

the theoretical analysis.
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1. Introduction

In this paper, we pay our attention to the following time-dependent incompressible Navier-

Stokes equation in two dimensions:

ut − ν∆u + (u · ∇)u+∇p = f , (x, t) ∈ Ω× (0, T ], (1.1)

∇ · u = 0, (x, t) ∈ Ω× (0, T ], (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where Ω ⊂ R
2 is a rectangular domain with boundary ∂Ω and x = (x1, x2). u = (u1, u2)

represents the velocity vector, p the pressure, f = (f1, f2) the body force, ν = 1/Re the

viscosity coefficient and Re is the Reynolds number.

It is well known that the time-dependent incompressible Navier-Stokes equations is a very

important system in the mathematical physics and the fluid mechanics fields. In the past

several decades, a lot of efforts have been devoted to the development of efficient numerical

approximations for solving this system [1–9]. In particular, a new fully-discrete finite element
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nonlinear Galerkin method was studied to the long time integration of the Navier-Stokes equa-

tions in [5] through the spatial discretization based on two-grid finite element technique and

the time discretization based on Euler explicit scheme with variable time stepsize. However,

a certain time step constraint was required so as to obtain the boundedness and convergence

of the above method. In [6], the Lagrange-Galerkin mixed finite element approximation of the

Navier-Stokes equations was discussed and the corresponding optimal estimate was derived with

the time stepsize restriction τ = O(hσ), where σ > (n− 1)/2 and n denotes the dimensions of

the domain Ω. A suboptimal convergence rate O(h+ τ + h2/τ) was derived in [8] by a charac-

teristics type Galerkin finite element methods. The restriction could become more serious when

the problem was considered in a high-dimensional space and/or with a non-uniform mesh.

On the other hand, for the nonlinear problems, linearized (semi)-implicit schemes are more

efficient since at each time step, the schemes only require solving the linear systems. However,

the time step restriction condition of the linearized schemes arising from the error analysis

is always a crucial issue (see [10]- [14]). In addition, the L∞ boundness of the numerical

solution is an essential condition in the error analysis. Most previous works require certain

time step restrictions when the inverse inequality is used to bound the numerical solution.

Therefore, there have been some attempts to reduce the time step restriction conditions. For

example, a new approach was introduced in [15] and [16] to get unconditional stability and

optimal error estimates of a linearized backward Euler Galerkin/Galerkin-mixed finite element

methods for the time-dependent Joule heating equations and the incompressible miscible flow

in porous media, respectively. This new approach is based on a new error splitting technique by

a corresponding time-discrete system. Then, with the proved certain regularity of the solution

of the time-discrete system, it follows that

‖Un
h ‖0,∞ ≤ ‖RhU

n‖0,∞ + ‖RhU
n −Un

h ‖0,∞ ≤ C + Ch−d/2hr+1,

where Un
h is the finite element solution, Rh is the Galerkin projection, d is the dimensions of Ω

and r is the degree of piecewise polynomial. Thus, the boundedness of the numerical solution Uh

in L∞-norm can be derived without any time step restriction. Subsequently, this approach has

been applied to many other problems [17]- [22] to study the convergence or superconvergence

of the numerical schemes and to deduce the error estimates almost unconditionally (i.e., the

step sizes h, τ ≤ s0 for some small positive constant s0). Moreover, in [23], the unconditional

stability and error estimates of modified characteristics finite element methods were researched

for the time-dependent Navier-Stokes equations. However, the boundary ∂Ω of Ω should belong

to C2 due to the boundedness of numerical solutionUn
h inW 1,∞-norm used in the error analysis.

In this paper, the unconditionally optimal error estimates are investigated for the time-

dependent Navier-Stokes equations with Lipschitz boundary ∂Ω, which is weaker than that

in [23]. The spatial discretization is approximated by a low order conforming bilinear-constant

mixed finite element method [24, 25], and the time discretization is approximated by semi-

implicit Euler scheme. The analysis is based on an error splitting technique proposed in [15,16]

with a time-discrete system. More precisely, the τ -independent error estimate is first derived

for the time-discrete system, then the numerical solution in L∞-norm can be bounded in terms

of the mathematical induction and inverse inequality, which lead to the unconditionally optimal

error estimates are achieved in a routine way.

The rest of this paper is organized as follows. In section 2, we introduce some notations and

preliminaries. Moreover, we also present the linearized semi-implicit Euler Galerkin scheme

and the main results. The temporal and the spatial error estimates are established in section


