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Abstract

This article studies a posteriori error analysis of fully discrete finite element approxima-

tions for semilinear parabolic optimal control problems. Based on elliptic reconstruction

approach introduced earlier by Makridakis and Nochetto [25], a residual based a poste-

riori error estimators for the state, co-state and control variables are derived. The space

discretization of the state and co-state variables is done by using the piecewise linear and

continuous finite elements, whereas the piecewise constant functions are employed for the

control variable. The temporal discretization is based on the backward Euler method.

We derive a posteriori error estimates for the state, co-state and control variables in the

L∞(0, T ;L2(Ω))-norm. Finally, a numerical experiment is performed to illustrate the per-

formance of the derived estimators.
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1. Introduction

Let Ω be a bounded convex polygonal domain in R
d (d ≤ 3) with Lipschitz boundary ∂Ω.

Set ΩT = Ω× (0, T ], ΓT = ∂Ω× [0, T ] with T <∞. We shall consider the following semilinear

parabolic optimal control problems:

min
u∈Uad

J(y, u) = min
u∈Uad

1

2

∫ T

0

{

‖y − yd‖2 + ‖u‖2
}

dt (1.1)

subject to the state equation















∂

∂t
y −∆y + φ(y) = f + u, in ΩT ,

y(x, 0) = y0(x), in Ω,

y = 0, on ΓT ,

(1.2)

and the control constraints

ua ≤ u(x, t) ≤ ub a.e. in ΩT , (1.3)
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where y = y(x, t) and u = u(x, t) denote the state variable and the control variable, respectively.

Moreover, the initial function y = y0(x) and the forcing function f = f(x, t) are assumed to be

smooth in their respective domain of definitions. The set of admissible controls is defined by

Uad =
{

u ∈ L2
(

0, T ;L2(Ω)
)

: ua ≤ u ≤ ub a.e. in ΩT

}

with ua, ub ∈ R fulfill ua < ub. In the above, φ(·) is of class C2 with respect to the state variable.

For any R > 0 the function φ(·) ∈ W 2,∞(−R,R), φ′(y) ∈ L2(Ω) for any y ∈ L2(0, T ;H1
0(Ω)),

and φ′(y) ≥ 0. Moreover, we assume that there exists positive constants CL and KL such that,

for all y1, y2 ∈ L2(0, T ;H1(Ω)),

∣

∣φ(y1)− φ(y2)
∣

∣ ≤ CL|y1 − y2|,
∣

∣φ′(y1)− φ′(y2)
∣

∣ ≤ KL|y1 − y2|. (1.4)

The numerical treatment of optimal control problems with time-dependent control is of

paramount importance because of their various applications in science and engineering (cf.

[20, 26, 33]). The finite element method is widely used numerical method in computing op-

timal control problems, see [1, 7, 14, 17, 19, 22, 26, 33] and references quoted therein. Though

theory of a posteriori error analysis of finite element methods for elliptic control problems is

well-developed, the literature seems lack for time dependent semilinear and nonlinear control

problems. For the standard parabolic problems, we refer the reader to [34,35] for the space-time

adaptivity, [13,28] for only time adaptivity and [3–5,9] for spatial adaptivity keeping temporal

variable continuous. In space-time adaptivity, the finite element discretization is based on the

space-time variational formulation and the error indicators include both space and time errors.

Makridakis and Nochetto [25] have used energy techniques in conjunction with an appropriate

pointwise representation of the error based on an elliptic reconstruction operator to recover the

optimal a posteriori error estimates in the L∞(0, T ;L2(Ω))-norm for the linear parabolic prob-

lem. The role of the elliptic reconstruction operator in a posteriori estimates is quite similar to

the role played by elliptic projection introduced by Wheeler [35] for recovering optimal a priori

error estimates for finite element method to parabolic problems. Essentially, using the elliptic

reconstruction z̃, the total error e = zh − z, where zh is the finite element solution, can be split

into zh − z̃, the error due to elliptic reconstruction and z̃ − z, which is the difference between

elliptic reconstruction and the exact solution. The construction of z̃ is such that the estimates

of zh − z̃ are based on a posteriori analysis of the elliptic problem, and the estimate for z̃ − z

is found out using the standard energy argument in terms of the estimates of zh − z̃. The

fully discrete a posteriori error estimates for parabolic problem using elliptic reconstruction can

be found in [16], for maximum norm estimates in [8], and for discontinuous Galerkin methods

in [10]. The previous work on the a posteriori error analysis for semilinear parabolic problems

are described in [2, 15, 27, 36], and for the semilinear parabolic interface problem, see [31, 32].

Some comparable work on nonlinear parabolic optimal control problems can be found

in [11,18,23,24,29]. In [11], the authors focus their work on three types of optimization problems

namely, the von Kfirmfin plate equations of nonlinear elasticity, the Ginzburg-Landau equations

of super conductivity, and the Navier-Stokes equations for incompressible viscous flows. First,

they have studied the existence of optimal solution for a class of nonlinear control problems with

some appropriate assumptions and have derived optimality system using Lagrange multipliers

technique. Further, a priori type error estimates for the approximate control problem is also

discussed. In [18], for fully discrete control problem, Li et al. have used spectral approximation

scheme for the space discretization and the backward Euler scheme for the time discretization.


