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Abstract

In this paper, the numerical methods for semi-linear stochastic delay integro-differential

equations are studied. The uniqueness, existence and stability of analytic solutions of

semi-linear stochastic delay integro-differential equations are studied and some suitable

conditions for the mean-square stability of the analytic solutions are also obtained. Then

the numerical approximation of exponential Euler method for semi-linear stochastic delay

integro-differential equations is constructed and the convergence and the stability of the

numerical method are studied. It is proved that the exponential Euler method is convergent

with strong order 1

2
and can keep the mean-square exponential stability of the analytical

solutions under some restrictions on the step size. In addition, numerical experiments are

presented to confirm the theoretical results.
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1. Introduction

Delay integro-differential equations (DIDEs) are often used to model some problems in

biology, medicine, and many other fields. Here we highlight [13] for models in population

dynamics and [12] for applications in physics, engineering or economy. Taking random noise

into account, we can obtain stochastic delay integro-differential equations (SDIDEs). Stochastic

delay integro-differential equations can be viewed as the generalizations of deterministic DIDEs

and stochastic delay differential equations (SDDEs). Explicit solutions can hardly be obtained

for SDIDEs, thus it is necessary to develop numerical methods and study their properties. Many

mathematicians have devoted their effort to study them and have obtained a large number of

achievements. We refer the numerical analysis linear SDIDEs to Shaikhet and Roberts [35],

Ding, et al. [5], Rathinasamy and Balachandran [33] and Jiang, et al. [11], and the numerical

analysis nonlinear SDIDEs to Li and Gan [18], Mirzaee and Hadadiyan [29] and Mirzaee, and

Samadyar [30].

The phenomenon of stiffness appears in the process of applying a certain numerical method

to ODEs and SDEs. It is known that the stiffness makes standard explicit integrators useless.

Nevertheless, the implicit scheme does not perform well either for the step size reduction is

forced by accuracy requirements: the method tends to resolve all the oscillations in the solu-

tions, hence its numerical inefficiency. Due to the cost of computing the Jacobian, and the
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exponential or related function of Jacobian, many works are directed at the semi-linear prob-

lems. Exponential integrators perform useful in solving semi-linear problems because they can

solve exactly the linear part. In order to overcome the stiffness in the semi-linear problems,

Lawson [17] firstly combines the exponential function with explicit Runge-Kutta methods and

gives exponential Runge-Kutta methods. The stability properties of exponential Runge-Kutta

methods are investigated in [8,21,31]. In [9,19,20,27,28,32], exponential Runge-Kutta methods,

exponential multi-step methods, exponential Rosenbrock methods and exponential general lin-

ear methods for semi-linear problems have been studied. For a detailed overview on the history

of exponential integrators as well as recent achievements, we refer to [24] and [10]. As there are

quite a few results about exponential integrators for semi-linear SDDEs and semi-linear SIDEs,

it is natural to apply exponential integrators to semi-linear stochastic delay integro-differential

equations (SLSDIDEs) and consider whether they have good stability and convergence proper-

ties.

In this paper, we focus on the SLSDIDEs with the following form




dy(t) = (Ay(t) + f
(
t, y(t), y(t− τ),

∫ t

t−τ

k(t, s, y(s))ds)
)
dt

+ g
(
t, y(t), y(t− τ),

∫ t

t−τ

k(t, s, y(s))ds
)
dω(t), t ∈ [0, T ],

y(t) = φ(t), t ∈ [−τ, 0],

(1.1)

where the delay parameter τ is a positive constant, A ∈ Rd×d. f : R × Rd × Rd × Rd → Rd,

g : R×Rd ×Rd ×Rd → Rd×r are continuous functions, k : R×R×Rd → Rd is a second order

continuous differentiable function which satisfies that for all t ≥ 0, t− τ ≤ s ≤ t, k(t, s, 0) = 0

and k′′ is bounded, that is for any y(s), there is a positive constant D0 such that |k′′| ≤ D0.

The initial data φ has bounded moments, that is, for each p > 0, there is a finite positive

constant Mp such that E |φ|
p
< Mp. ω(t) is an r−dimensional Brownian motion defined on

the complete probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual

conditions (that is, it is increasing and right continuous with F0 containing all P-null sets).

Unless otherwise specified, let |x| be the Euclidean norm in x ∈ Rd. If A is a vector

or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by

|A| =
√
trace(ATA). For simplicity, we also denote a ∧ b = min{a, b}, a∨ b = max{a, b}.

To ensure the existence and uniqueness of the solutions, we assume that f and g satisfy the

following Lipschitz condition

(1) (Lipschitz condition) There exists a positive constant L1, for all x1, y1, z1, x2, y2, z2 ∈ Rd,

t ≥ 0, such that

|f(t, x1, y1, z1)− f(t, x2, y2, z2)|
2 ∨ |g(t, x1, y1, z1)− g(t, x2, y2, z2)|

2

≤L1

(
|x1 − x2|

2
+ |y1 − y2|

2
+ |z1 − z2|

2
)
. (1.2)

It has been shown in [37] that the global Lipschitz condition (1.2) implies the following

linear growth condition.

(2) (Linear growth condition) There exists a positive constant L2, for any x, y, z ∈ Rd, t ≥ 0,

such that

|f(t, x, y, z)|
2
∨ |g(t, x, y, z)|

2
≤ L2

(
1 + |x|

2
+ |y|

2
+ |z|

2
)
. (1.3)


