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Abstract

In this paper, we study a nonlinear first-order singularly perturbed Volterra integro-

differential equation with delay. This equation is discretized by the backward Euler for

differential part and the composite numerical quadrature formula for integral part for which

both an a priori and an a posteriori error analysis in the maximum norm are derived. Based

on the a priori error bound and mesh equidistribution principle, we prove that there exists

a mesh gives optimal first order convergence which is robust with respect to the perturba-

tion parameter. The a posteriori error bound is used to choose a suitable monitor function

and design a corresponding adaptive grid generation algorithm. Furthermore, we extend

our presented adaptive grid algorithm to a class of second-order nonlinear singularly per-

turbed delay differential equations. Numerical results are provided to demonstrate the

effectiveness of our presented monitor function. Meanwhile, it is shown that the stan-

dard arc-length monitor function is unsuitable for this type of singularly perturbed delay

differential equations with a turning point.
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1. Introduction

In this paper, we consider the following nonlinear singularly perturbed delay Volterra

integro-differential equation in the interval Ī = [0, T ]:

Lu(t) := εu′(t) + a(t)u(t) +

∫ t

0

f(s, u(s), u(s− r))ds = 0, t ∈ I, (1.1)

u(t) = ϕ(t), t ∈ I0, (1.2)

where 0 < ε ≪ 1 is a perturbation parameter, I = (0, T ], I0 = [−r, 0] and a(t), ϕ(t) are given

sufficiently smooth functions. We assume that f(t, u, v) ∈ C1(Ī ×R×R), and there exist three
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positive constants b∗, c∗ and α, such that

∣∣∣∣
∂f

∂u

∣∣∣∣ ≤ b∗,

∣∣∣∣
∂f

∂v

∣∣∣∣ ≤ c∗, a(t) ≥ α > 0. (1.3)

It is well known that delay Volterra integro-differential equations (DVIDE’s) arise widely

in scientific fields such as physics, medicine, biology, ecology and so on [1–4]. These equations

pay an important role in natural science and modeling diverse problems of engineering, and

there has been tremendous interest in developing numerical approaches for DVIDE’s (see [5,6]

and the references therein). When the highest order derivative term of this kind of problems

is multiplied by a small parameter ε, these are said to be singularly perturbed delay Volterra

integro-differential equations (SPDVIDE’s). As ε → 0, the exact solution of these equations

may have a boundary layer(s) or interior layer(s). Therefore, it is very important to design a

suitable numerical method for these problems.

As we know, the commonly used techniques to solve singularly perturbed problems are to

construct suitable meshes that are very fine in layer regions. These meshes can be divided into

two classes. If the bounds of exact solution and its derivatives are available, one can construct

a class of special meshes, see for example the Bakhvalov and Shishkin meshes [7–9]. If the

priori information of the exact solution is hard to be obtained, it is desirable to design an a

posteriori mesh algorithm, which starts from an initial unsophisticated mesh and then detects

the boundary layers and generates an adaptive grid using only the current numerical solution

and mesh sizes (see, e.g., [10, 11]).

Over the last decades, there has been a growing interest in the numerical methods for

singularly perturbed Volterra integro-differential equations. For example, the authors in [12–

15] developed a fitted finite difference scheme on a uniform mesh and gave the convergence

results based on the priori information of the exact solution. Şevgin [16] presented a finite

difference scheme on a Shishkin mesh and proved that the scheme was first-order convergent in

the discrete maximum norm, independently of the perturbation parameter. Huang et.al., [17]

proposed an adaptive grid method based on an a posteriori error estimation to solve a singularly

perturbed Volterra integro-differential equation with a weakly singular kernel. To the best of our

knowledge, only few researchers discussed the numerical methods for SPDVIDE’s. For example,

Wu and Gan [18] studied the linear multistep method for SPDVIDE’s. The authors in [19]

constructed a finite difference scheme on a Shishkin mesh for a linear first-order SPDVIDE’s.

Yapman et.al., [20] considered a quasilinear SPDVIDE and proposed a fitted difference scheme

on a uniform mesh, which was first-order uniform convergence in the perturbation parameter. It

should be pointed out that the existing methods to solve singularly perturbed delay differential

equations need the priori information of the exact solution (see, e.g., [21]). Recently, Das [22]

developed an adaptive grid method based on an a posteriori error estimation to solve a system of

nonlinear singularly perturbed delay initial value problems, but he didn’t give the convergence

analysis for the priori error estimation and the assumption of the a posteriori error estimation

was too strict.

Motivated by literature [22], this paper will develop an adaptive grid method for problem

(1.1)-(1.2). At first, in order to avoid solving a system of nonlinear equations, we utilize

the backward Euler formula to discrete the first-order derivative and left rectangle formula to

approximate the integral term of problem (1.1)-(1.2). Then, based on the stability result and

a precise grid monitor function, the convergence analysis is carried out for the semi-discrete

adaptive mesh method. Furthermore, we derive an a posteriori error estimation for the presented


