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Abstract

We present a stochastic trust-region model-based framework in which its radius is

related to the probabilistic models. Especially, we propose a specific algorithm termed

STRME, in which the trust-region radius depends linearly on the gradient used to define

the latest model. The complexity results of the STRME method in nonconvex, convex

and strongly convex settings are presented, which match those of the existing algorithms

based on probabilistic properties. In addition, several numerical experiments are carried

out to reveal the benefits of the proposed methods compared to the existing stochastic

trust-region methods and other relevant stochastic gradient methods.
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1. Introduction

In this paper, we are concerned with the following unconstrained optimization problem

min
x∈Rd

f(x), (1.1)

where the objective function f is assumed to be smooth and bounded from below. But we

only have access to the function value and its derivative information with some noise. In recent

years, the expected risk minimization (ERM) problem, which is fundamental in the field of

machine learning and statistics, has become the focus of many researchers. The ERM problems

can be formulated as follows:

min
x∈Rd

f(x) = E [f(x; ξ)] , (1.2)

where E [·] denotes the expectation taken with respect to the random noise variable ξ. However,

because the probability distribution of ξ is unknown in advance, solving (1.2) is intractable
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directly. Usually only noisy information about the gradient of f is available. The empirical risk

problem with a fixed amount of data (possibly very large) or the on-line setting problem where

the data is flowing in sequentially, which involves an estimate of problem (1.2), is more often

considered in practice. Throughout the whole paper, we mainly consider stochastic optimization

methods to solve such kind of problems.

1.1. Related work

The classic stochastic optimization method is stochastic gradient descent (SGD) method,

which dates back to the work by [1]. The method is prominent in large-scale machine learning

due to its simplicity and low-cost computing. However, because of the variance introduced

by random sampling, the sequence of learning rate (step-size) progressively diminishes both

in theoretical analysis and practical implementation, which leads to slow convergence. Thus

finding an appropriate learning rate is critical for the performance of the SGD method, but it

is not easy in practice. There are many existing methods to deal with aforementioned issues,

and most of them can be classified into the following categories.

Adaptive stochastic gradient methods, e.g., AdaGrad [2], RMSProp [3], Adam [4],

AMSGrad [5], have emerged to alleviate the burden to tune step size, which are widely used in

deep learning.

Variance reduction methods have been proposed to improve the convergence of the SGD

method, such as SVRG [6], SAGA [7] and SARAH [8]. Especially, they have achieved linear

convergence rate when solving strongly convex problems, which is a stronger result than that

of the SGD method. Furthermore, these methods have also been extended to solve nonconvex

problems such as the deep neural networks [9–11]. The variance reduction technique is appli-

cable to the problem with a large but fixed sample set, for which the full gradient has to be

calculated as a compromise to achieve the significant variance reduction. Hence they are not

easy to fit on the on-line setting like the SGD method and adaptive gradient methods.

Trust-region based algorithms. Recently, with the success of deep neural networks,

the development and analysis of methods for nonconvex problems have attracted tremendous

attention. As we know, the traditional trust-region method is a class of well-established and

effective method in nonlinear optimization [12, 13]. An advantage of trust-region methods is

that they can be efficient on nonconvex and ill-conditioned problems since they can make use

of curvature information. Besides, due to the boundedness of the trust-region, the Hessian

approximation matrix is not required to be positive definite. The trust-region based framework

has already been considered to solve machine learning problems [14–20]. A saddle free New-

ton (SFN) method [16] is proposed to exploits the exact Hessian information to escape saddle

points. However its computation is high cost for large-scale and high-dimension problems. A

two-stage subspace trust-region approach [17] is proposed to train deep neural networks, in

which the local second-order model is conducted based on the partial information computed

from a subset of the data. But the approach lacks theoretical guarantees. Some literatures,

for example, [14, 15], focus a specific class of machine learning problems, which need to utilize

the accurate derivative information to construct good models, and the accurate function val-

ues to obtain good estimators. In [18], inexact Hessian information is incorporated into the

trust-region framework but the exact gradient and function values are required to be comput-

ed per iteration. In [19] and [20], the authors construct the inexact models to satisfy some

first-order accurate conditions with sufficiently high probability when building the trust-region

subproblem. The complexity of line search and cubic regularization algorithms is analysed [21]


