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Abstract

A common way to handle the Tikhonov regularization method for the first kind Fred-

holm integral equations, is first to discretize and then to work with the final linear system.

This unavoidably inflicts discretization errors which may lead to disastrous results, es-

pecially when a quadrature rule is used. We propose to regularize directly the integral

equation resulting in a continuous Tikhonov problem. The Tikhonov problem is reduced

to a simple least squares problem by applying the Golub-Kahan bidiagonalization (GKB)

directly to the integral operator. The regularization parameter and the iteration index are

determined by the discrepancy principle approach. Moreover, we study the discrete version

of the proposed method resulted from numerical evaluating the needed integrals. Focusing

on the nodal values of the solution results in a weighted version of GKB-Tikhonov method

for linear systems arisen from the Nyström discretization. Finally, we use numerical ex-

periments on a few test problems to illustrate the performance of our algorithms.
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1. Introduction

The first kind integral equations are an important tool to describe the relationship between

hidden information and available noisy data. This situation occurs in many applications such

as medical imaging, geophysical prospecting, image deblurring and deconvolution of a measure-

ment instruments response [2, 3, 11, 15, 22, 25, 29]. The general form of a first kind Fredholm

integral equation is ∫
Ω

k(t, y)φ(y)dy = f(t), t ∈ Ω, (1.1)

where Ω is a Jordan measurable and closed bounded set in Rm, for some m ≥ 1 [1, 21]. The

function φ is unknown and the kernel k and the right-hand side f are given. By defining the

operator K : L2(Ω)→ L2(Ω)

(Kφ)(t) :=

∫
Ω

k(t, y)φ(y)dy, t ∈ Ω,
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the operator form of (1.1) can be written as

Kφ = f. (1.2)

When k is continuous, the operator K is compact and so K−1 is not continuous, i.e., the solution

φ does not depend continuously on the data f and is sensitive to small changes in f . This is

important from the point that in all applications the data will be measured quantities and the

right-hand side f is of the form

f = fexact + e, (1.3)

where e and fexact denote the perturbation and the unknown error-free right-hand side, respec-

tively. On this basis, the solution obtained by numerical methods proposed to the second kind

Fredholm integral equations, can be very far from the solution of unperturbed problem

Kφexact = fexact. (1.4)

Hence to compute less sensitive approximations of φexact, some regularization must be employed,

i.e., Eq. (1.2) must be replaced by a nearby equation having better numerical properties [12,20].

We will assume that a fairly accurate of the norm of e in (1.3),

‖e‖L2 = δ, (1.5)

is known.

The most popular regularization method was introduced by Tikhonov [28] consisting in

solving the problem

min
φ∈L2(Ω)

{‖Kφ− f‖2L2 + α‖φ‖2L2}, (1.6)

where α > 0 is called the regularization parameter. Since K is bounded, the minimization

problem (1.6) has a unique solution φα which is given by the solution of the equation

αφα +K∗Kφα = K∗f, (1.7)

where K∗ denotes the adjoint of the operator K [20, 21].

Based on the available error level (1.5), a suitable value of α can be determined by the

famous method discrepancy principle; that is, the parameter α(δ) be chosen so that

‖Kφα − f‖ = ηδ,

where η ≥ 1 is a user-specified constant independent of δ. From [20, Section 2.5], the discrepancy

principle based on the Tikhonov regularization method is admissible, i.e., α(δ)→ 0 and

φα(δ) → 0, δ → 0.

A difficulty with continuous problems such as (1.1) is that they cannot be represented and

manipulated on a computer. A general approach is to discretize the original problem (1.1) and

regularize the final linear system of equations

Ax = b, A ∈ RN×N , x, b ∈ RN , (1.8)

which is known as a discrete inverse problem [12]. As a result, the solution φ is approximated

in a finite number of points in the domain. For example, when the Nyström method is used, the


