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Abstract

In this paper, we study the finite element approximation for nonlinear thermal equation.

Because the nonlinearity of the equation, our theoretical analysis is based on the error of

temporal and spatial discretization. We consider a fully discrete second order backward

difference formula based on a finite element method to approximate the temperature and

electric potential, and establish optimal L2 error estimates for the fully discrete finite

element solution without any restriction on the time-step size. The discrete solution is

bounded in infinite norm. Finally, several numerical examples are presented to demonstrate

the accuracy and efficiency of the proposed method.
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1. Introduction

In this work, we consider the following nonlinear heat equation:

θt −∆θ = σ(θ)|∇φ|2 in QT , (1.1)

−∇ · (σ(θ)∇φ) = 0 in QT , (1.2)

where QT = Ω × (0, T ), T > 0 is a given finite final time and Ω is a bounded domain with

Lipschitz boundary ∂Ω. The unknown variables are the electric potential φ and the temperature

θ. The physical parameter is the electrical conductivity σ, which depends on the temperature

θ. The Joule heating is σ(θ)|∇φ|2. The system is considered along with the following initial

and boundary conditions:

θ(x, 0) = θ0 ∀x ∈ Ω, (1.3)

θ(x, t) = 0, φ(x, t) = g on ST , (1.4)

where ST = ∂Ω × (0, T ). Following the previous works [9, 26], we assume that σ ∈ W 1,∞(R)

and

σ1 ≤ σ(s) ≤ σ2

* Received June 4, 2020 / Revised version received September 22, 2020 / Accepted October 19, 2020 /

Published online February 26, 2021 /
1) Corresponding author



An Unconditionally Stable Finite Element Method for Thermal Problem 357

for some positive constants σ1 and σ2.

The thermistor problem is a coupled system of nonlinear PDEs, which consists of the heat

equation with the Joule heating as a source, and the current conservation equation with temper-

ature dependent electrical conductivity. It is known that Joule heating (also known as Ohmic

heating and resistive heating) will be produced when the existing electric current acts on a

conductive liquid, which may be the main heat source in many real applications.

Many authors have discussed the numerical methods for the time-dependent nonlinear ther-

mistor equations. We recall some important studies about the problem. Yue [22] used the

piecewise linear finite element approximation to solve the heat equations and to show the L2-

error estimate and H1-error estimate all h-order. Elliott et al [9] proved an optimal L2-error

estimate with the condition ∆t = O(h1/2) in 3-dimensional space, in which a linearized semi-

implicit Euler scheme with a linear Galerkin finite element method was used. A finite element

approach was introduced in [14,15], in which the error estimates of a linearized backward Euler

Galerkin method for a porous media flow and the thermistor system were obtained, respectively,

under the condition of h and ∆t being smaller than a positive constant. Other related studies

on this topic can be found in [1–3, 8, 19–21, 27] and the references therein. In all these works,

error estimates were established under certain time-step restrictions, which depend upon the

dimension, the scheme, and the nonlinearity of the equations in general.

We also make some investigations on the optimal error estimates of the unconditional con-

vergence for the nonlinear heat equation. In [13], the authors proved the optimal error estimates

of the fully discrete Crank-Nicolson Galerkin method unconditionally, in which they obtained

the L2 optimal error for temperature and the optimal L12/5 error estimate for the electric

potential. Let us note that here and in what follows, the term unconditional means that the

convergence of numerical solution does not depend on CFL condition. In a two-dimensional

nonconvex polygon, the time-dependent nonlinear thermistor problem was studied in [10], in

which the authors proved the optimal error estimates of a linearized backward Euler Galerkin fi-

nite element method unconditional. However, the motivation of our study is to give the optimal

L2 error estimate for the temperature and electric potential based on second order backward

difference formula (BDF2).

In this work, we discretize the problem (1.1)-(1.4) by the second order backward difference

formula in temporal domain and by the mixed finite element in spatial domain. More precisely,

the stable mixed finite elements are used to approximate temperature field and electric potential.

In order to simplify the calculation in practice, we treat the nonlinear Joule heating term by

explicit scheme. Thus the fully discrete scheme proposed here requires only solving a linear

system per time step. In order to get rid of certain restrictions like ∆t ≤ Chs on the time step,

we employ a error splitting approach in terms of the time-discrete system. We unconditionally

derive optimal error estimates for temperature and electric potential. In addition, several

numerical examples are implemented to demonstrate both accuracy and efficiency of the discrete

scheme.

For the mathematical setting of the heat equations (1.1)-(1.2) with the initials and boundary

conditions (1.3)-(1.4), we introduce some function spaces and their associated norms. For all

m ∈ N
+, 1 ≤ p ≤ ∞, let Wm,p(Ω) denote the standard Sobolev space and it is written as

Hm(Ω) when p = 2. The norm in Wm,p(Ω), denoted by ‖ · ‖m,p, is defined as follows:

‖v‖m,p =

(

∑

|γ|≤m

‖Dγv‖p0,p

)1/p

with ‖v‖0,p =

(
∫

Ω

|v|p dx

)1/p

, 1 ≤ p <∞,


