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Abstract

We consider a nonlinear stochastic Volterra integral equation with time-dependent delay

and the corresponding Euler-Maruyama method in this paper. Strong convergence rate (at

fixed point) of the corresponding Euler-Maruyama method is obtained when coefficients f

and g both satisfy local Lipschitz and linear growth conditions. An example is provided to

interpret our conclusions. Our result generalizes and improves the conclusion in [J. Gao, H.

Liang, S. Ma, Strong convergence of the semi-implicit Euler method for nonlinear stochastic

Volterra integral equations with constant delay, Appl. Math. Comput., 348(2019)385-398.]
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1. Introduction and Main Result

Stochastic Volterra-type integral equations become more and more important since there

are various applications in many fields such as physics, medical sciences, engineering, finance

and so on. Strong existence and uniqueness of the nonlinear Volterra-type stochastic integral

equations were discussed in [2] by Ito in 1979. However, the stochastic Volterra-type equations

can not be solved explicitly for most cases. So numerical methods have been playing important

roles in studying these equations.

Recently convergence of different numerical methods for nonlinear stochastic Volterra inte-

gral equations has attracted more and more attention. For example, [9] considered the con-

vergence of a numerical technique based on a combination of the Picard iteration method

and hat basis functions under global Lipschitz conditions, [10] considered Euler schemes for s-

tochastic Volterra equations with singular kernels (the coefficients are both Lipschitz continuous

with space variable), [8] proposed collocation technique based on delta function approximations

for nonlinear stochastic Itô-Volterra equations, [7] investigated strong superconvergence of the

Euler-Maruyama method for linear stochastic Volterra integral equations, and then [1] gener-

alized [7] to the semi-implicit Euler methods of following nonlinear Volterra integral equations

X(t) = φ(t) +

∫ t

t−τ
σ1(t− s)f(X(s))ds+

∫ t

t−τ
σ2(t− s)g(X(s))dW (s), t ∈ [0, T ]
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with global Lipschitz condition and obtained that the convergence order of this numerical

solution is 0.5.

As far as we know, few literatures have been considered for the convergence of numerical

methods for stochastic Voterra integral equations under the local Lipschitz condition. On the

other hand, although many systems depend on the past states of their own, the delay might

not be constant. For example, in the pandemic of COVID-19, when they are infected, many

people will have the symptoms after different period of time, then the number of people with

symptoms must be a system with time-dependent delay, so the systems with time-dependent

delays become more and more important.

In this work, we are concerned with the following nonlinear stochastic Voterra integral

equation with time-dependent delay under local Lipschitz and linear growth conditions of f

and g:

X(t) = φ(t) +

∫ t

t−δ(t)
σ1(t− s)f(X(s))ds+

∫ t

t−δ(t)
σ2(t− s)g(X(s))dW (s), t ∈ [0, T ] (1.1)

with the initial value

X0 = ξ = {ξ(θ), θ ∈ [−τ, 0]} ∈ CbF0
([−τ, 0];Rd).

Here CbF0
([−τ, 0];Rd) denotes the set of measurable function ξ : (t, ω) → ξ(t, ω) such that for

any fixed ω ∈ Ω, ξ(·, ω) ∈ C([−τ, 0];Rd), and for any fixed t ∈ [−τ, 0], ξ(t, ·) is a bounded F0

measurable Rd valued random variable. W (t) is m-dimensional standard Brownian motion,

δ(t) ∈ C1(R+,R+) such that δ(0) = τ, δ
′
(t) < 1. Here and from now on, |x| = (

∑d
i=0 x

2
i )

1
2 .

Moreover, for any fixed t, φ(t) is a random variable, σ1, σ2 : R+ → R, and f and g are Rd-valued

and d×m-matrix valued measurable functions, respectively.

Assumption 1.1. For any fixed R > 0, there is LR > 0 such that for all |x|
∨
|y| ≤ R,

|f(x)− f(y)| ∨ ||g(x)− g(y)|| ≤ LR|x− y|. (1.2)

Here || · || denotes the trace norm of a matrix.

As interpreted in [5], Remark 2.1, we can always select sufficiently small ∆∗ > 0 and a

strictly monotone decreasing function h : (0,∆∗]→ (0,∞) such that

lim
∆→0

h(∆) =∞, lim
∆→0

L2
h(∆)∆ = 0. (1.3)

Assumption 1.2. There is a constant K > 0 such that for all x ∈ Rd,

|f(x)| ∨ ||g(x)|| ≤ K(1 + |x|). (1.4)

To approximate the exact solution of Eq. (1.1), we take ∆ as the stepsize of the numerical

solution satisfying ∆ = T
N = τ

n0
. Let tn = n∆, n = −n0,−n0 + 1, · · · , 1, · · · , N − 1, tN = T .

The Euler-Maruyama method for (1.1) is defined as follows:

Xn = φ(tn) +

n−1∑
l=n−n∆

∫ tl+1

tl

σ1(tn − s)ds · f(Xl)

+

n−1∑
l=n−n∆

σ2(tn − tl)g(Xl)∆Wl, n ≥ 1, (1.5a)

Xn = ξ(tn), n = −n0,−n0 + 1, · · · ,−1, 0 (1.5b)


