
Journal of Computational Mathematics

Vol.40, No.4, 2022, 544–572.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2011-m2019-0174

GENERAL FULL IMPLICIT STRONG TAYLOR
APPROXIMATIONS FOR STIFF STOCHASTIC DIFFERENTIAL

EQUATIONS*

Kai Liu1)

School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China;

College of Science, Hunan University Of Technology and Business, Changsha 410205, China.

Email: 752964253@qq.com

Guiding Gu

School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China.

Email: guiding@mail.shufe.edu.cn

Abstract

In this paper, we present the backward stochastic Taylor expansions for a Ito process, in-

cluding backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions. We

construct the general full implicit strong Taylor approximations (including Ito-Taylor and

Stratonovich-Taylor schemes) with implicitness in both the deterministic and the stochas-

tic terms for the stiff stochastic differential equations (SSDE) by employing truncations of

backward stochastic Taylor expansions. We demonstrate that these schemes will converge

strongly with corresponding order 1, 2, 3, . . . . Mean-square stability has been investigated

for full implicit strong Stratonovich-Taylor scheme with order 2, and it has larger mean-

square stability region than the explicit and the semi-implicit strong Stratonovich-Taylor

schemes with order 2. We can improve the stability of simulations considerably without too

much additional computational effort by using our full implicit schemes. The full implicit

strong Taylor schemes allow a larger range of time step sizes than other schemes and are

suitable for SSDE with stiffness on both the drift and the diffusion terms. Our numerical

experiment show these points.
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1. Introduction

We are concerned with numerical methods for the solution of a d-dimensional vector Ito

stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (1.1)

where {Wt, t ∈ [0, T ]} is an m-dimensional Wiener process with components W 1
t ,W

2
t , · · · ,Wm

t ,

which are independent standard Wiener processes on a filtered probability space (Ω,F , (Ft)t≥0,

P), a is a d-dimensional vector function from [0, T ]×R
d to R

d and b is a d×m-matrix function

from [0, T ]× R
d to R

d×m. We interpret (1.1) as a stochastic integral equation

Xt = X0 +

∫ t

0

a (s,Xs) ds+

m∑

j=1

∫ t

0

bj (s,Xs) dW
j
s (1.2)
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with the i-th component being

X i
t = X i

0 +

∫ t

0

ai (s,Xs) ds+

m∑

j=1

∫ t

0

bi,j (s,Xs) dW
j
s , i = 1, . . . , d, (1.3)

where the stochastic integrals are Ito stochastic integrals. We call X = {Xt, t ∈ [0, T ]} an Ito

process.

We also can transform (1.1) into the equivalent Stratonovich form

dXt = a(t,Xt)dt+ b(t,Xt) ◦ dWt (1.4)

with

ai(t,X) = ai(t,X)− 1

2

d∑

j=1

m∑

k=1

bj,k(t,X)
∂bi,k

∂xj
(t,X), i = 1, . . . , d, (1.5)

and the form of stochastic integral equation is

Xt = X0 +

∫ t

0

a (s,Xs) ds+

m∑

j=1

∫ t

0

bj (s,Xs) ◦ dW j
s (1.6)

with the i-th component being

X i
t = X i

0 +

∫ t

0

ai (s,Xs) ds+

m∑

j=1

∫ t

0

bi,j (s,Xs) ◦ dW j
s , i = 1, . . . , d, (1.7)

where the stochastic integrals are Stratonovich stochastic integrals. For more details, see [3].

The stochastic differential equation can be applied in many different fields. Examples in-

clude population dynamics, protein kinetics, genetics, experimental psychology, neuronal activ-

ity, investment finance, option pricing, turbulent diffusion, radio-astronomy, helicopter rotor,

satellite orbit stability, biological waste treatment, hydrology, air quality, seismology, structural

mechanics, fatigue cracking, optical bistability, nematic liquid crystals, blood clotting dynamic-

s, cellular energetics, Josephson tunneling junctions, communications and stochastic annealing.

For more examples and details, we refer to [3].

However, explicit solutions of Eqs. (1.1) are rare in practical applications and numerical

methods are necessary. The most efficient and widely applicable approach to solving (1.1) is

the simulation of sample paths of time discrete approximations, like Euler scheme, Milstein

scheme and so on. In this paper, we focus on the time discrete approximations and consider

a time discretization (τ)∆ with

0 = τ0 < τ1 < · · · < τn < · · · < τN = T (1.8)

of a time interval [0, T ], which in the simplest equidistant case has step size

∆ = T/N. (1.9)

The simplest time discrete approximation is the Euler scheme. For (1.1), it has the form

Yn+1 = Yn + a (τn, Yn)∆ + b (τn, Yn)∆W (1.10)

for n = 0, 1, . . . , N − 1 with initial value

Y0 = X0, (1.11)

∆W = Wτn+1 −Wτn . (1.12)


