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Abstract

To reduce the computational cost, we propose a regularizing modified Levenberg-

Marquardt scheme via multiscale Galerkin method for solving nonlinear ill-posed prob-

lems. Convergence results for the regularizing modified Levenberg-Marquardt scheme for

the solution of nonlinear ill-posed problems have been proved. Based on these results, we

propose a modified heuristic parameter choice rule to terminate the regularizing modified

Levenberg-Marquardt scheme. By imposing certain conditions on the noise, we derive

optimal convergence rates on the approximate solution under special source conditions.

Numerical results are presented to illustrate the performance of the regularizing modified

Levenberg-Marquardt scheme under the modified heuristic parameter choice.
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1. Introduction

Many researchers have achieved a lot of important results in nonlinear ill-posed problems,

see, e.g., [16,18,19,21,24,29,36,46]. However, the research results on numerical implementation

in nonlinear ill-posed problems are very limited [23, 30]. In this paper we will fill in this gap

by developing a regularizing modified Levenberg-Marquardt scheme via multiscale Galerkin

method. Generally, in order to perform numerical calculations, we have to transform the

problem of infinite dimensionality into a finite dimensional problem [37, 38, 44]. Therefore,

the study of infinite to finite dimension is of great significance. Among conventional numerical

methods for solving ill-posed problems, the collocation method [31,42] and the Galerkin method

[1, 22, 40] are well known. The collocation method has received the most favorable attention

in ill-posed problems due to its lower computational cost, in comparison with the Galerkin

method. In this paper, we will show that the Galerkin method also has its own advantages (see

(4.4)). When the projection space is determined, the influence of noise can be reduced by the

Galerkin method, e.g., denoising by the wavelet basis.
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Although multiscale Galerkin method [5, 6, 8, 9] for solving linear ill-posed problems have

been widely used [10, 11, 34, 35, 43], less attention has been paid to the development of multi-

scale Galerkin method for solving nonlinear ill-posed problems [4]. One of the bottlenecks of

multiscale Galerkin method for solving nonlinear ill-posed problems is the huge computational

cost. In nonlinear regularization methods [13], compared with the linear ill-posed problem,

for solving the nonlinear problem with multiscale Galerkin method, we need to keep updating

the coefficient matrix. Note that the amount of computation required to update the coeffi-

cient matrix is huge. Hence, we propose a regularizing modified Levenberg-Marquardt scheme

to solving nonlinear ill-posed problems. Such an idea has already been used in [46]. Obvi-

ously, we can directly use the two methods mentioned in [46]. Unfortunately, the number of

iterations for both methods is not satisfactory. Fortunately, we found that the regularizing

Levenberg-Marquardt scheme is very fast and effective in [18,19,24]. That is why we proposed

the regularizing modified Levenberg-Marquardt scheme to solve nonlinear ill-posed problems.

The parameter choice rules are mainly divided into three categories: a prior parameter choice

rule [14,20,39], a posterior parameter choice rule [21,26,36,41,47,48], and heuristic parameter

choice rule [17, 25, 28, 29, 50]. The prior parameter choice rule and the posterior parameter

rule require accurate knowledge of the noise level to obtain satisfactory approximate solutions.

The heuristic parameter selection criterion is not guaranteed to always converge [2], but the

heuristic parameter selection criterion does not require such noise level information. In practical

applications, such noise level is not always available or reliable. Therefore, the more popular

ones is the heuristic parameter choice rule.

This paper is organized as follows. In Section 2, we shall propose a modified Levenberg-

Marquardt scheme via multiscale Galerkin methods to solve nonlinear ill-posed problems. The

modified Levenberg-Marquardt scheme greatly reduces the amount of calculations originally

performed. In Section 3 we prove the convergence of the modified Levenberg-Marquardt scheme

via multiscale Galerkin methods for the noise free case. In Section 4 we prove convergence of

the modified Levenberg-Marquardt scheme via multiscale Galerkin methods for the noise case.

In Section 5, we propose a modified heuristic parameter choice rule under these convergence

results. Based on certain conditions on the noise, we prove the optimal convergence rate of

the approximate solution. Finally, in Section 6 we report some numerical results to verify the

theoretical analysis for the modified heuristic parameter choice rule.

2. A Regularizing Modified Levenberg-Marquardt Scheme

In this section, we propose a regularizing modified Levenberg-Marquardt scheme via multi-

scale Galerkin methods for solving the nonlinear ill-posed problems. By comparing it with the

multilevel augmentation methods, we can know that such scheme greatly reduces the amount

of numerical calculation.

We shall deal with the nonlinear integral equation

F (x) = y (2.1)

arising from ill-posed problems [13, 32], where operator F : D(F ) ⊂ X→ Y is Fréchet differen-

tiable and given by

F (x) :=

∫
Ω

k(s, t, x(t))dt, s ∈ Ω ⊂ R,

where k(s, t, x(t)) is nonlinear kernel, x(t) is unknown function and R is the set of real numbers.

In many applications it follows from physical considerations that yδ we obtain is a reasonably


