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Abstract

Two nonconforming penalty methods for the two-dimensional stationary Navier-Stokes

equations are studied in this paper. These methods are based on the weakly continuous

P1 vector fields and the locally divergence-free (LDF) finite elements, which respectively

penalize local divergence and are discontinuous across edges. These methods have no

penalty factors and avoid solving the saddle-point problems. The existence and uniqueness

of the velocity solution are proved, and the optimal error estimates of the energy norms and

L2-norms are obtained. Moreover, we propose unified pressure recovery algorithms and

prove the optimal error estimates of L2-norm for pressure. We design a unified iterative

method for numerical experiments to verify the correctness of the theoretical analysis.
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1. Introduction

It is well-known that the difficulty of solving Navier-Stokes equations (or Stokes-type) with

conforming mixed finite element methods is to satisfy the inf-sup stability condition and enforce

the locally divergence free (LDF) property of finite element spaces. The low-order and equal-

order elements do not satisfy the inf-sup condition, e.g., P1-P0, P1-P1, although P2-P0 satisfies,

there’s no optimal error estimate. The discrete velocities of the incompressible fluids have

divergence-free property [20], but not accurately divergence-free property in each element.

Crouzeix and Raviart [9] proposed the CRP1 nonconforming finite element methods to solve

the Stokes problems, then Temam [19] extended these methods to the stationary Navier-Stokes

equations. The advantages of CRP1 nonconforming finite element are the locally divergence-free

property inside each element and the weak continuity of the edge midpoint, but it’s not readily

available to construct global basis functions. In addition, Baker et al. [1] studied the Stokes

problems by using the locally divergence-free (LDF) finite element methods, it’s noteworthy

that the basis functions for these methods are easy to construct but lack continuity between

elements.

The locally divergence-free Crouzeix-Raviart nonconforming P1 vector fields (namely CRP1

nonconforming finite elements) were used in the stationary Stokes equations [9] and time-

harmonic Maxwell equations [3]. Two new nonconforming finite elements have been developed
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by relaxing the constraints of CRP1, that is, weakly continuous P1 finite elements and locally

divergence-free (LDF) finite elements. Firstly, it’s relatively simple to define weakly continu-

ous P1 finite elements, which have been applied to two-dimensional curl-curl [5] and grad-div

problems [2]. Secondly, approximate properties and basis functions of the locally divergence-

free (LDF) finite elements have been studied in [18], and the curl-curl problems [4], Maxwell

equations [8] and stationary Navier-Stokes equations [15, 16] have been solved by using this

approach. Related research has confirmed the potential of the above two nonconforming finite

elements. On this basis, two new discontinuous Galerkin methods, namely the LDP method

and the DG-LDF method, are proposed to solve the two-dimensional Stokes problems without

penalty factors [17].

In this paper, the two approaches in [17] are generalized to the nonlinear incompressible

stationary Navier-Stokes equations. We prove the existence and uniqueness of the velocity

solution, and obtain the optimal error estimates. Due to different definitions of unified form,

the forms of error estimates are also different from [17]. However, it can be seen from the

numerical experiments that the optimal convergence orders of the energy norms and L2-norms

for the velocities are the same as [17]. First of all, we use the method of [20], which only focuses

on solving the velocity of the fluid, the strengths of this method are to avoid the saddle-point

problem and thus the inf-sup condition. Then, the method in [11, 21] is applied to establish

the pressure recovery algorithm according to the calculated velocity. Based on the two velocity

schemes, unified pressure recovery algorithms are proposed and the optimal error estimate of

L2-norm for the pressure is analyzed. A unified iterative method is designed to verify the

correctness and efficiency of the theoretical analysis.

This paper is organized as follows. In section 2, we introduce basic notations for Sobolev

spaces and two weak formulations for stationary Navier-Stokes equations. In section 3, we

propose the LDP and DG-LDF schemes and prove the existence and uniqueness of the velocity

solution in section 4. In section 5, optimal convergence orders for the energy norms and L2-

norms for the velocity are obtained. In section 6, unified pressure recovery algorithms are

proposed and the optimal error estimate of L2-norm for the pressure is proved. In section 7,

we propose a unified iterative method and carry out numerical experiments, and we give some

concluding remarks in section 8.

2. Notations and Weak Formulations

We consider the following stationary Navier-Stokes equations:
−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω ⊂ Rd(d = 2, 3) is a bounded domain, u = u(x) ∈ Rd is the fluid velocity, p = p(x) ∈ R
is the pressure, f = f(x) ∈ Rd is an external body force, ν > 0 is the viscosity coefficient.

Throughout the paper, for real-valued functions, W k,p(Ω) and W k,p
0 (Ω) denote the k-order

Sobolev spaces, and these spaces are endowed with norms ||·||Wk,p(Ω) = ||·||k,p,Ω and semi-norms

| · |Wk,p(Ω) = | · |k,p,Ω. When k = 1, p = 2, W 1,2(Ω) = H1(Ω) and W 1,2
0 (Ω) = H1

0 (Ω). When

k = 0, p = 2, W 0,2(Ω) = L2(Ω) is equipped with the L2 inner product (·, ·) and L2-norm ‖ · ‖0.

Similarly, for vector-valued functions: H1(Ω)d = H1(Ω), H1
0 (Ω)d = H1

0 (Ω), L2(Ω)d = L2(Ω).

Let M = L2
0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}, H(div0) = {v ∈ L2(Ω) : ∇ · v = 0}, X = H1

0 (Ω)d,


