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Abstract

In this paper, we study a few challenging theoretical and numerical issues on the well

known trust region policy optimization for deep reinforcement learning. The goal is to find

a policy that maximizes the total expected reward when the agent acts according to the

policy. The trust region subproblem is constructed with a surrogate function coherent to

the total expected reward and a general distance constraint around the latest policy. We

solve the subproblem using a preconditioned stochastic gradient method with a line search

scheme to ensure that each step promotes the model function and stays in the trust region.

To overcome the bias caused by sampling to the function estimations under the random

settings, we add the empirical standard deviation of the total expected reward to the

predicted increase in a ratio in order to update the trust region radius and decide whether

the trial point is accepted. Moreover, for a Gaussian policy which is commonly used for

continuous action space, the maximization with respect to the mean and covariance is

performed separately to control the entropy loss. Our theoretical analysis shows that the

deterministic version of the proposed algorithm tends to generate a monotonic improvement

of the total expected reward and the global convergence is guaranteed under moderate

assumptions. Comparisons with the state-of-the–art methods demonstrate the effectiveness

and robustness of our method over robotic controls and game playings from OpenAI Gym.
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1. Introduction

In reinforcement learning, the agent starts from an initial state and interacts with the

environment by executing an action from some policy iteratively. At each time step, the en-

vironment transforms the current state into the next state with respect to the action selected

by the agent and gives back a reward to the agent to evaluate how good the action is, then

the agent makes a new action for the next interaction based on the feedback. Repeating the

above transition dynamics generates a trajectory where stores the visited states, actions and

rewards. During the interactions, the transition probability and the reward function are totally

determined by the environment, but the intrinsic mechanism may be mysterious. The policy

characterizes the distribution of actions at each possible state. The problem is how to design

a policy for the agent to maximize the total expected reward along a trajectory induced by

the policy. The state-of-the-art model-free methods for reinforcement learning [28, 33] can be
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divided into policy-based and value-based methods. Policy-based methods directly learn or try

to approximate the optimal policy by policy improvement and policy evaluation alternative-

ly. They generate a map, i.e., a distribution from states to actions, which can be stochastic

or deterministic. That is, they can be applied to both continuous and discrete action spaces.

While in value-based methods, the goal is approximating the solution of the optimal Bellman

equation based upon the temporal difference learning [33]. They learn a value function defined

on the state-action pairs to estimate the maximal expected return of the action taken in the

state. Then at each sate, the optimal policy based on the value function predicts a single action

by maximizing the values.

The recent progress of deep neural networks [23] provides many scalable and reliable learning

based approaches [8, 11, 24, 29, 31] for solving large and complex real-world problems in rein-

forcement learning. The curse of dimensionality is conquered by expressing the value and/or

policy function with a deep neural network from high-dimensional or limited sensory inputs.

The deepening expedites the evolution of end-to-end reinforcement learning, also referred as

deep reinforcement learning. As a representative and illuminative algorithm in deep value-based

methods, deep Q-learning (DQN) [25] has succeeded in many discrete domains such as playing

Atari games. The learned agent arrives at a comparable level to that of a professional human

games player. They construct a Q-network to receive the raw pictures as inputs, and optimize

the weights by minimizing the Bellman residual. DQN can be viewed as a deep value iteration

method directly, and some independent improvements including their combinations have been

summarized in [14]. The success of DQN and its variants has a restriction on the type of the

problem, specifically, the maximal operator in the objective function makes the optimization

to be less reliable in continuous and/or large action space. By representing the greedy action

selection with a policy network, the deep deterministic policy gradient (DDPG) method [24]

successfully extends the algorithmic idea of DQN into the continuous action space. The val-

ue network imitates the training in DQN and the policy network is updated by maximizing

the estimated values. The two delayed deep deterministic (TD3) policy gradient algorithm [9]

substantially improves DDPG by building double deep Q-networks to avoid overestimation in

value estimates and delaying the policy updates to reduce the per-update error in DDPG.

Different from the optimization models based on value functions, policy-based algorithms

also concentrate on optimizing the policy iteratively. In the policy improvement step, the

actor updates the policy by optimizing an appropriate objective function using gradient-based

methods. Policy evaluation creates a critic, i.e., a value function, to assess the policy by

minimizing the Bellman error associated with the policy, which provides a basis for policy

improvement. Thus the policy-based methods are usually classified as actor-critic methods. As

the optimization is practically based on the observations, the generalized advantage estimators

(GAE) [30] are mostly considered for the bias-variance tradeoff and numerical stability. The

discrepancy among the state-of-the-art policy-based methods mainly locates in the actor part,

specifically, the surrogate function used for improving the policy. The trust region policy

optimization (TRPO) [29] generalizes the proof the policy improvement bound in [16] into

general stochastic policies and proposes a trust region model for policy update. The model

function is a local approximation of the total expected reward and the Kullback-Leibler (KL)

divergence between two policies is considered as a distance constraint. The subproblem under

parameterization is highly nonlinear and nonconvex rather than a typical quadratic model

as in [3, 6, 37] because the policy is parameterized by a neural network and the trust region

constraint is replaced by a distance function of two policies. In order to develop a practical


