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Abstract

This articles first investigates boundary integral operators for the three-dimensional

isotropic linear elasticity of a biphasic model with piecewise constant Lamé coefficients in

the form of a bounded domain of arbitrary shape surrounded by a background material.

In the simple case of a spherical inclusion, the vector spherical harmonics consist of eigen-

functions of the single and double layer boundary operators and we provide their spectra.

Further, in the case of many spherical inclusions with isotropic materials, each with its

own set of Lamé parameters, we propose an integral equation and a subsequent Galerkin

discretization using the vector spherical harmonics and apply the discretization to several

numerical test cases.
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1. Introduction

We consider three-dimensional boundary value or interface problems of the isotropic elas-

ticity equation related to the following operator:

Lu := −div
(

2µe(u) + λTr
(
e(u)

)
Id
)
, (1.1)

where the strain tensor reads e(u) = 1
2 (∇u+∇u>). It is obvious to see that the operator L is

self-adjoint on L2(R3)3.

In the definition of the operator (1.1), µ, λ ∈ R, µ > 0, 2µ + 3λ > 0 are the so-called

(constant) Lamé parameters. The parameter µ denotes the shear modulus which describes the

tendency of the object to deform at a constant volume when being imposed with opposing

forces. The other Lamé parameter λ has no physical meanings but is introduced to simplify

the definition of the operator (1.1). Indeed, it is related to the bulk modulus K through the

relation

λ = K − 2

3
µ,

where the bulk modulus K represents the object’s tendency to deform in all directions when

acted on by opposing force from all directions. We refer to [12] for more detailed descriptions
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of the Lamé parameters. It is sometimes useful to introduce Poisson’s ratio ν which is defined

by

ν =
λ

2(µ+ λ)
, (1.2)

and whose admissible range is (−1, 1/2). The material is extremely compressible in the limit

ν → −1 while extremely incompressible in the other limit ν → 1/2 [18].

A model of linear elasticity with appropriate boundary conditions can be approximated by

the classic finite element method, see for example [15,19] just to name a few contributions from

an abundant body of literature, for the general case with non-homogeneous source term. On

the other hand, displacement fields u being homogeneous solutions, i.e., Lu = 0 within a given

domain, can also be represented by isotropic elastic potentials [3,13] and elasticity in piecewise

constant isotropic media can then be treated as integral equations for specified interface condi-

tions. At the origin of the integral formulation lies the definitions of layer potentials and their

corresponding integral operators [3, 20] based on the Green’s function [1] in the context of the

isotropic linear elasticity.

In particular, on a unit sphere, one can introduce the vector spherical harmonics forming an

orthonormal basis of [L2(S2)]3 and which are eigenfunctions of the corresponding double and

single layer boundary operators based on the Green’s function [1] of isotropic linear elasticity.

The vector spherical harmonics were introduced in [9,10] as an extension of the scalar spherical

harmonics [16,23] to the vectorial case. They were further used in the discretization of different

physical models such as the Navier-Stokes equations [8] or Maxwell’s equations [2,6]. However,

they are not widely used and only sparely reported in literature, in particular in the context

of isotropic elasticity. We demonstrate in this article that the corresponding integral operators

have interesting spectral properties which can be made explicit by employing the vector spherical

harmonics.

Our main motivation for this work is the derivation of an integral equation to model elastic

materials represented by piecewise constant Lamé constants with spherical inclusions following

similar principles that were presented in [4,5,14] in the case of scalar diffusion. The particular

choice of the vector spherical harmonics as basis functions for a Galerkin discretization thereof

leads then to an efficient and stable numerical scheme by exploiting the spectral properties

of the involved integral operators. A similar physical model was introduced in [22] with an

algebraic formula of the approximate solution. However, with the spectral properties of the layer

potentials and integral operators at hand, our approach first introduces an integral formulation

for the exact solution and thus a rigorous mathematical framework. In a second step, we then

propose the Galerkin discretization. The mathematical framework lays out the basis to derive

a rigorous error analysis which we plan in the future.

We summarize the main contributions and organization of this work as follows:

• In Sections 2 and 3, we give an introduction and overview of the layer potentials and

corresponding boundary integral operators of the isotropic linear elasticity operator (1.1)

on an arbitrary bounded domain with Lipschitz boundary which are sparely reported in

the literature.

• Analytical properties of layer potentials and boundary integral operators are presented

and proven in Section 3.4.

• On the unit sphere, we introduce the vector spherical harmonics in Section 4 and prove

spectral properties of the boundary operators and layer potentials of this particular basis.


