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Abstract

In countless applications, we need to reconstruct a K-sparse signal x ∈ R
n from noisy

measurements y = Φx + v, where Φ ∈ R
m×n is a sensing matrix and v ∈ R

m is a noise

vector. Orthogonal least squares (OLS), which selects at each step the column that results

in the most significant decrease in the residual power, is one of the most popular sparse

recovery algorithms. In this paper, we investigate the number of iterations required for

recovering x with the OLS algorithm. We show that OLS provides a stable reconstruction of

all K-sparse signals x in ⌈2.8K⌉ iterations provided that Φ satisfies the restricted isometry

property (RIP). Our result provides a better recovery bound and fewer number of required

iterations than those proposed by Foucart in 2013.
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1. Introduction

Compressed sensing (CS) has been attracted considerable attention in numerous fields [1–5].

The main task of CS is to recover a signal x ∈ R
n from

y = Φx+ v, (1.1)

where Φ ∈ R
m×n(m ≪ n) is a sensing matrix with ℓ2-normalized columns, x is a K-sparse

(i.e., ‖x‖0 ≤ K, where ‖x‖0 denotes the number of nonzero entries of x) signal, and v ∈ R
m is

a noise vector.

There are many algorithms ([6–12]) for recovering x from (1.1). One of the popular one

is the orthogonal least squares (OLS) [13–16] algorithm. It has been shown in [15] that OLS
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is computationally more expensive yet is more reliable than the orthogonal matching pursuit

(OMP) algorithm [17, 18], hence it has been attracted much attention in recent years. OLS

identifies the support of x by adding one index to the list at each iteration, and estimates the

coefficients of the sparse vector over the enlarged support. Specifically, it adds to the estimated

support an index which leads to the maximum reduction of the residual power in each iteration.

The vestige of the active list is then eliminated from y, yields a residual update for the next

iteration.

Denote Ω = {1, · · · , n} and T = supp(x) = {i|xi 6= 0, i ∈ Ω} as the support of K-sparse

signal x. Let Λ be a subset of Ω, |Λ| be the cardinality of Λ, and T \Λ = {i|i ∈ T, i /∈ Λ}.
Let xΛ ∈ R

n be the vector equal to x on the index set Λ and zero elsewhere. Throughout the

paper, we assume that Φ ∈ R
m×n is column normalized (i.e., ‖Φi‖2 = 1 for i = 1, 2, · · · , n)1) .

Let ΦΛ ∈ R
m×|Λ| be the submatrix of Φ with index of its columns in set Λ. For any matrix ΦΛ

of full column-rank, let Φ†
Λ = (Φ′

ΛΦΛ)
−1Φ′

Λ be the pseudo-inverse of ΦΛ, where Φ′
Λ denotes

the transpose of ΦΛ. PΛ = ΦΛΦ
†
Λ and P⊥

Λ = I − PΛ denote the orthogonal projection onto

span(ΦΛ) (i.e., the column space of ΦΛ) and its orthogonal complement, respectively. OLS is

mathematically described in Algorithm 1.1.

Algorithm 1.1. The OLS algorithm [19]

Input: Φ, y, maximum iteration number kmax.

Initialization: For r0 = y, k = 0, and S0 = ∅.
1: while k < kmax do

2: k = k + 1. 3: Choose the index sk that satisfies

sk = argmin
i∈Ω

‖P⊥
Sk−1∪{i}y‖22.

4: Let Sk = Sk−1
⋃{sk}, and calculate

xk = argmin
supp(u)=Sk

‖y−Φu‖2.

5: rk = y −Φxk = P⊥
Sky.

6: end while

Output: xk and Sk.

The performance analysis of OLS has been extensively studied. For example, Soussen et

al. showed that OLS is guaranteed to exactly recover the support of x in at most K iterations

when the exact recovery condition (ERC) is met [14]. Based on mutual coherence, Herzet et al.

addressed the exact recovery of x in the noiseless setting when some partial information of its

support is available [15]. Herzet et al. developed extended coherence-based sufficient conditions

for exact sparse support recovery with OLS [16]. Wen et al. [19] and Geng et al. [20] utilized the

restricted isometry property (RIP), which is defined as follows, to study the sufficient condition

of exact recovery of x with OLS. Using the RIP, the authors in [21–24] discussed the performance

of multiple OLS which is an extension of OLS.

Definition 1.1 ([25]). A measurement matrix Φ is said to satisfy the RIP of order K if there

exists a constant δ ∈ [0, 1) such that,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (1.2)

1) The behavior of OLS is unchanged whether columns of Φ are normalized or not ([31]).


