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Abstract

In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm

for constructing a sparse approximation of functions in terms of expansion by orthonormal

polynomials. For the two kinds of sampled data, data with noises and without noises, we

apply the mutual coherence of measurement matrix to establish the convergence of the

QOMP algorithm which can reconstruct s-sparse Legendre polynomials, Chebyshev poly-

nomials and trigonometric polynomials in s step iterations. The results are also extended

to general bounded orthogonal system including tensor product of these three univariate

orthogonal polynomials. Finally, numerical experiments will be presented to verify the

effectiveness of the QOMP method.
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1. Introduction

Since [11], it has been an interesting research topic to accurately reconstruct functions via

a sparse representation with respect to an orthogonal basis. Suppose that Ω ⊆ Rd and that

{φj(x)}j∈Λ is a set of orthogonal polynomials defined on Ω, where Λ is an index set. Suppose

that |Λ| = n, here | · | means the cardinality of Λ, and n� 1 can be finite or infinite. For any

continuous function g on Ω, we can have an orthonormal expansion of g:

g(x) =
∑
j∈Λ

cjφj(x). (1.1)

In any practical computation, one can not have a memory to store all the coefficients cj .

Thus one is interested in finding a sparse representation of g in the sense that

g(x) ≈
∑
j∈Λs

c̃jφj(x) (1.2)

for a given integer s ≥ 1, where Λs ⊂ Λ and |Λs| = s� n. That is, letting c̃ be all the coefficient

vectors containing all nonzero coefficients in (1.2), if |Λs| � n and ≈ is =, the right-hand side
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of the expression in (1.2) is said to be a sparse representation of g. For practical purpose, we

say the right-hand side of the expression in (1.2) is a sparse approximation of g. The problem

of finding c̃ is naturally translated into reconstructing the s-sparse vector c̃.

Since [1, 7, 8, 14], compressed sensing has been a popular research topic. Its main idea is to

use the sparsity of signal to reconstruct the signal by using as few observations as possible. The

original model of compressed sensing is

min
c∈Cn

||c||0 s.t. Φc = b, (1.3)

where ||c||0 represents the number of non-zero elements in the vector c, that is, the sparsity

of the vector c, Φ ∈ Cm×n is a measurement matrix or sensing matrix, and b ∈ Cm×1 is an

observation vector, such as bi = g(xi), i = 1, · · · ,m for some locations xi ∈ Ω. The model (1.3)

is the model of the sampled data without noise. Since there may be noise in sampled data,

assume that the noise bound is ε, then the model (1.3) can be written as follows

min
c∈Cn

||c||0 s.t. ||Φc− b||2 ≤ ε, (1.4)

where || · ||2 represents Euclidean norm. If we know in advance that the sparsity of the vector

to be restored is s, then the problem (1.4) can be rewritten as

min
c∈Cn

||Φc− b||2 s.t. ||c||0 ≤ s. (1.5)

Many researchers have applied the technique of solving the sparse signal in compressed

sensing to reconstruct the coefficient vector c̃, see, e.g. [21], [19], [20], [23] and [10].

A greedy algorithm is one of the common methods to solve the problem (1.5). Among them,

the orthogonal matching pursuit algorithm (OMP for short) proposed in [6] is an importan-

t one of the greedy algorithms. Currently, there have been many improvements of the OMP

method, such as regularized Orthogonal Matching Pursuit [12], Generalized Orthogonal Match-

ing Pursuit [15], stagewise Orthogonal Matching Pursuit [16], etc. In this paper we propose

an improved method of OMP method named Quasi-Orthogonal Matching Pursuit (QOMP for

short). Different from the traditional OMP method, the QOMP method selects the two columns

that are most related to the space of the current redundant vector expansion in each iteration.

Algorithm 1.1. Quasi-Orthogonal Matching Pursuit (QOMP)

Input: Φm×n,bm×1, sparsity s, maximum number of iterations kmax(kmax < m/2),

tolerance ε

Initialization: S0 = ∅, r0 = (b), k = 0,Ψm×n = Φm×n
while k < kmax and ||rk||2 > ε

k = k + 1

Res(i,j)(rk−1) = minu,v∈R{||Ψiu+ Ψjv − rk−1||2}
(ik, jk) = argmin1≤i,j≤n{Res(i,j)(rk−1)}
Sk = Sk−1 ∪ {ik, jk}
rk = b− ΦSk

Φ†Sk
b

Ψik,jk = 0

end while

Output:S = Sk, cS = Φ†Sb and cSc = 0


