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Abstract

In this paper, a fully discrete finite element scheme with second-order temporal accu-

racy is proposed for a fluid-fluid interaction model, which consists of two Navier-Stokes

equations coupled by a linear interface condition. The proposed fully discrete scheme is a

combination of a mixed finite element approximation for spatial discretization, the second-

order backward differentiation formula for temporal discretization, the second-order Gear’s

extrapolation approach for the interface terms and extrapolated treatments in linearization

for the nonlinear terms. Moreover, the unconditional stability is established by rigorous

analysis and error estimate for the fully discrete scheme is also derived. Finally, some

numerical experiments are carried out to verify the theoretical results and illustrate the

accuracy and efficiency of the proposed scheme.
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1. Introduction

Numerical simulation of multi-domain and multi-physics coupling of one fluid with another

fluid is an important aspect in many industrial applications. In fact, the fluid-fluid interaction

model can be seen as one of them arises in many important scientific, engineering and industrial

applications, such as heterogeneous of blood flow [8] and atmosphere-ocean interaction [20–22].

Due to the practical importance of the fluid-fluid interaction problem, there has been a lot of

attention recently paid to the development of accurate and efficient numerical methods; see,

e.g., [5,16–19,23] among many others. Besides, Bresch and Koko [4] have presented a numerical

simulation of the considered model by using an operator-splitting method and optimization-

based nonoverlapping domain decomposition methods. Based on implicit-explicit scheme for

the nonlinear interface conditions, Connors et al. [7] have presented a decoupled time stepping

method, which is conditionally stable proved by Zhang et al. [25]. Recently, Aggul et al. [2]

have developed a predictor-corrector-type method that is an unconditionally stable scheme with

second order time accuracy.
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In this paper, we study the following governing equations of a fluid-fluid interaction model

[9, 26]. Let a bounded domain Ω ⊂ R
2 consist of two sub-domains Ω1 and Ω2 coupled across

their shared interface I, for times t ∈ [0, T ]. For i = 1, 2, given the kinematic viscosities

νi > 0, the friction coefficients κ > 0, the body forces fi : [0, T ] → H1(Ωi)
2, and initial values

ui,0 ∈ H1(Ωi)
2, find the fluid velocities ui : [0, T ]×Ωi → R

2 and pressures pi : [0, T ]×Ωi → R

satisfying (for t ∈ (0, T ])

ui,t − νi∆ui + ui · ∇ui +∇pi = fi in Ωi,

− νini · ∇ui · τ = κ(ui − uj) · τ on I, for i, j = 1, 2, and i 6= j,

ui · ni = 0 on I,

∇ · ui = 0 in Ωi,

ui(0, x) = ui,0(x) in Ωi,

ui = 0 on Γi := ∂Ωi\I.

(1.1)

The vectors ni are the unit normals on ∂Ωi, and τ is any vector on I such that τ · ni = 0.

Note that the linear interface conditions are considered on the interface I, which have been

studied in past score years. Lions et al. [22] and Friedlander and Serre [9] have proved the

existence, uniqueness and regularity of the solution of the problem (1.1). Recently, Zhang et

al. [26] have proved that the error estimates of a decoupled scheme for the velocities in H1

norm and pressures in L2 norm are ∆t
7
8 +h and ∆t

3
4 +h, respectively. However, the decoupled

scheme is conditionally convergent with ∆t ≤ ch
1
2 . Besides, for the same interface condition

as problem (1.1), Connors et al. [6] have proposed a partitioned time stepping method for a

parabolic two-domain problem and analyzed the error estimates.

In this paper, the purpose of the current efforts is to propose and investigate a fully discrete

finite element scheme with second order temporal accuracy for the fluid-fluid interaction model

(1.1). We discretize the system in time via a combination of second order backward differenti-

ation formula (BDF) for the temporal terms, second order Gear’s extrapolation approach for

the interface terms and extrapolated treatments in linearization for the nonlinear terms. The

coupling terms in the interface conditions are treated explicitly in our scheme so that only two

decoupled Navier-Stokes equations are solved at each time step.

The rest of the paper is arranged as follows: In the next section, we introduce some mathe-

matical preliminaries and provide the corresponding variational form for the problem (1.1). In

Section 3, we propose a fully discrete finite element scheme for the fluid-fluid interaction model.

Besides, the unconditional stability of the presented scheme is proven. Then in Section 4, we

derive and prove the error estimates for the considered scheme. In Section 5, some numerical

experiments are implemented to verify the theoretical results and efficiency of the proposed

scheme. Consequently, we end our paper by drawing a conclusion in the last section.

2. Notation and Preliminaries

In this section, we describe some necessary definitions and inequalities, which will be fre-

quently applied to the following sections. We introduce the usual L2(Ωi) norm and its inner

product by ‖ · ‖0 and (·, ·)Ωi
, respectively. The Lp(Ωi) norms and the Sobolev Wm

p (Ωi) norms

are denoted by ‖ · ‖Lp(Ωi) and ‖ · ‖Wm
p (Ωi) for m ∈ N

+, 1 ≤ p ≤ ∞. In particular, Hm(Ωi)

is used to represent the Sobolev space Wm
2 (Ωi) and ‖ · ‖m denotes the norm in Hm(Ωi). For


