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Abstract

By using the Onsager principle as an approximation tool, we give a novel derivation

for the moving finite element method for gradient flow equations. We show that the

discretized problem has the same energy dissipation structure as the continuous one. This

enables us to do numerical analysis for the stationary solution of a nonlinear reaction

diffusion equation using the approximation theory of free-knot piecewise polynomials. We

show that under certain conditions the solution obtained by the moving finite element

method converges to a local minimizer of the total energy when time goes to infinity. The

global minimizer, once it is detected by the discrete scheme, approximates the continuous

stationary solution in optimal order. Numerical examples for a linear diffusion equation

and a nonlinear Allen-Cahn equation are given to verify the analytical results.
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1. Introduction

The moving finite element method (MFEM) was first developed in [27,28] about forty years

ago. It is a typical r-type adaptive method [6,7,17,22,34], where the mesh vertexes are relocated

without changing the mesh topology. In the MFEM, the mesh relocation is done by solving a

dynamic equation for the vertexes coupled with the original partial differential equations. No

interpolation is needed in the method since the mesh is continuous with time. The MFEM has

arisen considerable interest and has been further developed in several directions (c.f [1–3,8,16,36]

among many others).

However, like all other r-adaptive methods, the theoretical analysis for the MFEM is far

from being complete. The first error analysis for MFEM was done by Dupont [16], where

he proved the optimal convergence of the method for a linear convection diffusion equation

when the solution is smooth. This is not enough since we are more interested in non-smooth

solutions for adaptive methods. Later on, Jimack proved the locally optimal approximation

for the stationary solution of a linear parabolic equation without the smoothness assumption

[19–21]. In this study, we aim to do analysis for a nonlinear gradient flow system by using the

Onsager variational principle as an approximation tool. Recently, a similar energetic variational

approach is used to develop interesting Lagrangian schemes for some gradient flow systems [9,

23, 24].
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The Onsager variational principle is a fundamental principle for irreversible thermodynamic

processes in statistical physics [14, 29, 30]. It has be used to model many dissipative physical

systems [13,14], such as the Stokes equation in hydrodynamics, the Ericksen-Leslie equation in

liquid crystal, and the GNBC boundary condition for moving contact lines [33], etc. Recently,

the Onsager principle has been used as an approximation tool for many problems in two-phase

flows and in material science [12, 15, 18, 26, 37, 38]. In particular, it has been used to derive an

efficient numerical method for wetting dynamics [25].

In this work, we first give a new derivation of the MFEM for a gradient flow system by using

the Onsager principle as an approximation tool. The key idea is to approximate the system in a

nonlinear approximation space of free-knot piecewise polynomials [10]. Both the mesh vertexes

and the nodal values of the finite element function are regarded as unknowns. We derive a

system of ordinary differential equations(ODEs) for them. The ODE system coincides with the

discrete equation of the MFEM, which has been derived in a totally different way in [28]. Here

we do not need to compute the multiply of a Dirac measure and a discontinuous function, so

that the “mollification” technique or any other formally calculation is not needed. Furthermore,

our derivation shows that the discretized problem has the same energy dissipation structure

of the continuous system. This makes us to prove the energy decay property of the discrete

problem easily.

Based on the variational formula, we do error analyse for the MFEM for a stationary solution

of the gradient flow system. The analysis can be regarded as a generalization of the results

in [20] to nonlinear equations. We show that the MFEM gives locally best approximations to

the energy. When a global minimizer is detected, an optimal error estimate is proved using the

nonlinear approximation theory. Numerical examples show that the optimal convergence can be

obtained for a linear diffusion equation and for stationary solutions of a nonlinear Allan-Cahn

equation. In this paper, we mainly consider the one dimensional problem. All the results can

be generalized to higher dimensional cases directly.

The structure of the paper is as follows. In section 2, we introduce the Onsager variational

principle and show that it can be used to derive the partial differential equation model for a

gradient flow system. In Section 3, we derive the MFEM by using the Onsager principle as an

approximation tool. In Section 4, we do error analysis for the stationary solution of a nonlinear

reaction diffusion equation. Some numerical examples are illustrated to verify the analytical

results in the last section.

2. The Onsager Variational Principle for a Gradient Flow System

2.1. The Onsager principle

Suppose a physical system is described by a time dependent function u. For simplicity, we

denote by u̇ = ∂u
∂t the time derivative of u. For a dissipated system, the evolution of u can

dissipate energy. The dissipation function is defined as half of the total energy dissipated with

respect to the flux u̇(c.f. [14]). For a simple gradient flow system, we assume the dissipation

function is

Φ(u̇) =
ξ

2
‖u̇‖2, (2.1)

where ξ is a positive friction coefficient determined by the dissipation processes of a physical

system and ‖ · ‖ is a L2 norm.


