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Abstract

This paper presents an application of the sparse Bayesian learning (SBL) algorithm

to linear inverse problems with a high order total variation (HOTV) sparsity prior. For

the problem of sparse signal recovery, SBL often produces more accurate estimates than

maximum a posteriori estimates, including those that use ℓ1 regularization. Moreover,

rather than a single signal estimate, SBL yields a full posterior density estimate which can

be used for uncertainty quantification. However, SBL is only immediately applicable to

problems having a direct sparsity prior, or to those that can be formed via synthesis. This

paper demonstrates how a problem with an HOTV sparsity prior can be formulated via

synthesis, and then utilizes SBL. This expands the class of problems available to Bayesian

learning to include, e.g., inverse problems dealing with the recovery of piecewise smooth

functions or signals from data. Numerical examples are provided to demonstrate how this

new technique is effectively employed.
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1. Introduction

Many real-world phenomena give rise to piecewise smooth signals [29]. As such, their re-

covery from measurement data is a well-studied inverse problem [36]. Particular attention has

been paid to piecewise smooth signal or function recovery from Fourier or spectral data [20–22].

The standard approach to piecewise smooth signal recovery is to minimize a least squares

cost function with some form of ℓ1-norm-based high order total variation (HOTV) regulariza-

tion [6, 9, 28, 32]. This is well-known to encourage sparsity in the approximate edge domain

of the function. While more advanced techniques exist, e.g. total generalized variation [6], in

practice this regularization of the approximate edge domain can be achieved in the simplest for-

m by penalizing the gradient domain of the signal using the HOTV operator Tm ∈ R
(N−m)×N ,

a finite difference approximation to the mth gradient. Hence we limit our discussion to HOTV,

and in particular HOTV orders m = 1, 2, 3, and note that our method is easily adapted for

m ≥ 4. Using such an operator is common for inverse problems in image processing when one

* Received June 1, 2021 / Revised version received October 8, 2021 / Accepted October 19, 2021 /

Published online November 14, 2022 /
1) Corresponding author



Estimation and Uncertainty Quantification for Piecewise Smooth Signal Recovery 247

has a prior belief that the signal of interest being recovered is approximately piecewise polyno-

mial of order m− 1 [1]. This approach has been useful in various applications, for rexample to

improve robustness in synthetic aperture radar imaging [33], to recover fine details in electron

tomography imaging [34], as well as in interior tomography [42], and MRI [27].

The main contribution of this paper is an alternative Bayesian learning based approach for

inverse problems where an HOTV sparsity prior is appropriate. This expands the class of prob-

lems available to this strong class of methods which provides a full posterior density estimate

rather than a single point estimate. Because the sparsity assumption for piecewise smooth signal

reconstruction is typically viewed in the analysis formulation, i.e. Tmx = s with x the signal of

interest and s the sparse representation, Bayesian learning is not immediately applicable. To

this end, we note that a group of methods has been developed to apply one or more of some

types of analysis operators in a Bayesian learning framework, see e.g. [3,10–12,19]. However, the

methods in these papers differ from what is considered here in that the analysis operators they

examine are limited to square filter matrices. Moreover, the techniques exclusively employ TV

regularization, restricting them to first order, although a more sophisticated spatially-variant

TV implementation is also considered in some cases. In addition, the forward operators used

are also square and limited to blurring applications. This is required to ensure invertibility

of the resulting covariance matrix. We address this issue later in Section 4.2. In particular,

since the mth order total variation operator Tm is not square and therefore not invertible, and

we wish to also consider underdetermined forward operators, another approach is required. In

what follows, our approach is to form an approximately equivalent synthesis formulation of the

form x = V s in order to effectively reduce the problem to sparse signal recovery. Since sparse

Bayesian learning (SBL) [38], is then applicable and has been shown to be more effective than

many other methods for sparse signal recovery [23,25], then one can expect better performance

in this synthesis construction as well. Our procedure involves a modification from [30] to the

analysis operators Tm to make these operators full rank and therefore invertible. This ultimate-

ly enables the use of a Bayesian learning algorithm for inverse problems with a HOTV sparsity

prior like piecewise smooth signal recovery.

The rest of this paper is organized as follows. Section 2 reviews sparse signal recovery

using a maximum a posteriori estimate, and describes how both the synthesis and analysis

approaches are typically employed to recover signals that are sparse in a transform domain

(e.g. the HOTV domain). Section 3 explains how to formulate a synthesis approach for the

HOTV analysis operators via the technique introduced in [30]. Motivated by its success for

sparse signal recovery, in Section 4 we demonstrate how SBL specifically can be applied to

synthetic HOTV. Numerical examples are implemented in Section 5, where we demonstrate

that this approach, which we call high order total variation Bayesian learning (HOTVBL),

outperforms the standard ℓ1 norm based HOTV regularization. Some concluding remarks and

ideas for future investigations are provided in Section 6.

2. Background

2.1. Sparse signal recovery

Let x ∈ R
N be a sparse signal with k ≪ N of its elements nonzero. We seek to recover x

from measurements

b = Ax+ n, (2.1)


