Journal of Computational Mathematics, Vol.12, No.2, 1994, 113-117.

PRECONDITIONING OF THE STIFFNESS MATRIX OF LOCAL REFINED TRIANGULATION*1)

Zhang Sheng (Computing Center, Academia Sinica, Beijing, China)

Abstract

A preconditioning method for the finite element stiffness matrix is given in this paper. The triangulation is refined in a subregion; the preconditioning process is composed of resolution of two regular subproblems; the condition number of the preconditioned matrix is $O(1 + \log \frac{H}{h})$, where H and h are mesh sizes of the unrefined and local refined triangulations respectively.

1. Introduction

In practical computation, the triangulation is often refined in a subregion. In this case, the condition number of the stiffness matrix, determined by the mesh size of the local refined triangulation, will be increased seriously.

Let $\Omega \subset \mathbb{R}^2$ be a polygonal region, and

$$Lu = -\sum_{i,j=1}^{2} \frac{\partial u}{\partial x_i} (a_{ij} \frac{\partial u}{\partial x_j}) + cu$$

be an elliptic operator defined on it, where $(a_{i,j})_{i,j=1,2}$ is symmetric positive definite and bounded from above and below on Ω , $c \ge 0$.

and below on
$$u, c \geq 0$$
.
$$\begin{cases} a(u,v) = (f,v), & v \in H_0^1(\Omega), \\ u \in H_0^1(\Omega) \end{cases} \tag{1.1}$$

is the variational form of the boundary value problem, with the bilinear form

$$a(u,v) = \int_{\Omega} \Big[\sum_{i,j=1}^{2} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} + cu\dot{v} \Big].$$

For convenience we discuss only the homogeneous Dirichlet boundary value problem here. The norm in $H_0^1(\Omega)$ introduced by $a(\cdot,\cdot)$ is equivalent to the original one. $H_0^1(\Omega)$ will be treated as a Hilbert space with inner product $a(\cdot,\cdot)$ in the following.

(1.1) is discretized by the finite element method. Triangulation and the linear continuous element will be discussed.

^{*} Received August 14, 1992.

¹⁾ A key project of Chinese Academy of Sciences.

 $\Omega_0 \subset \Omega$ is a polygonal subregion, and T is a triangulation on Ω , quasi-uniform and locally regular, the mesh size of which is O(H). The boundary of Ω_0 coincides with this triangulation. The triangulation is refined on Ω_0 , and we get a triangulation T_0 on Ω_0 , where \mathcal{T}_0 is quasi-uniform and locally regular on Ω_0 , the mesh size of which is O(h). \mathcal{T} and \mathcal{T}_0 compose the finite element triangulation.

 $S_0^H(\Omega) \subset H_0^1(\Omega)$ is the finite element space corresponding to \mathcal{T} on Ω , $S_0^h(\Omega_0) \subset$ $H_0^1(\Omega_0)$ is the finite element space corresponding to \mathcal{T}_0 on Ω_0 , and $S = S_0^H(\Omega) + S_0^h(\Omega_0)$ is the finite element space. $\hat{\Omega}$ is the set of finite element node points in Ω corresponding to \mathcal{T} , $\hat{\Omega}_0$ is the set of finite element node points in Ω_0 corresponding to \mathcal{T}_0 , and $\hat{\Omega} \cup \hat{\Omega}_0$ amounts to the set of finite element node points. $\{\phi_i, i \in \hat{\Omega}\}$ is the usual finite element basis functions of $S_0^H(\Omega)$, and $\{\phi_i^0, i \in \hat{\Omega}_0\}$ is the usual finite element basis functions of $S_0^h(\Omega_0)$. Let

(a). Let
$$\begin{cases} \psi_i = \phi_i, & i \in \hat{\Omega} - \hat{\Omega}_0, \\ \psi_i = \phi_i^0, & i \in \hat{\Omega}_0. \end{cases}$$
 The discrete form of (1.1) will be

The discrete form of (1.1) will be

orm of (1.1) will be
$$\begin{cases} a(u,\psi_i) \neq (f,\psi_i), & i \in \hat{\Omega} \cup \hat{\Omega}_0, \\ u \in S. \end{cases} \tag{1.2}$$

The matrix form is

$$Ax = b ag{1.3}$$

where $A = a(\psi_i, \psi_j)_{i,j \in \hat{\Omega} \cup \hat{\Omega}_0}$. It is well known that Cond $(A) = O(h^{-2})$.

An iterative method is often used to solve (1.3). Preconditioning is an efficient technique to accelerate various iterations. A good preconditioner Q should satisfy the following two conditions: 1) Cond $(Q^{-1}A)$ is small; 2) Qx = b can be solved easily.

Domain decomposition is an important approach of the construction of a preconditioner. In the following, Ω_0 will be decomposed from Ω , and the preconditioning process is composed of resolution of two regular subproblems (discrete problems on quasi-uniform triangulation).

2. Construction of the Preconditioner

$$\begin{cases} a(u,\phi_i) = (f,\phi_i), & i \in \hat{\Omega}, \\ u \in S^H \end{cases} \tag{2.1}$$

and
$$\begin{cases} a(u,\phi_i^0) = (f,\phi_i^0), & i \in \hat{\Omega}_0, \\ u \in S^h \end{cases} \tag{2.2}$$

are two discrete problems on Ω and Ω_0 respectively.

We use A^H and A^h to represent the coefficient matrices of (2.1) and (2.2). (2.1) and (2.2) are regular problems on uniform triangulations. If triangulations T and T_0 are