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Abstract

A spectral scheme is considered for solving the barotropic vorticity equation.
The error estimates are proved strictly. The technique used in this paper is also
useful for other nonlinear problems defined on a spherical surface.

. 1. Introduction

The barotropic vorticity equation plays an impﬂrtaﬁt role in the research of weather
predlctlon see [1-5]. Many efforts have been made to solve this equation numerically.

The early works were mainly concerned with finite-difference methods. In particular,
' the conservative schemes were applied successfully; see [3,4]. Since 1970s, global nu-

merical weather prediction has developed rapidly, so it seems more natural to adopt

a spectral method, see [5-8]. Because of the high accuracy of spectral approximation,

- this method becomes more and more attractive for long-time weather prediction. On

the other hand, although strict error estimations of spectral schemes for atmospheric
equations have been set up (see [7-10]), they are valid only for problems in Descartes

coordinates. Indeed, as pointed out in [11], no rigorous approximation theory is avail-
able for the spectral method in spherical polar coordinates. Thus it is significant to
develop the spectral method and its error analysis of the corresponding partial differ-
ential equations defined on a spherical surface for numerical weather prediction and

~other related problems.

In this paper, we present a spectral scheme for the barotropic vorticity equation

_defined on the spherical surface. In Section 2, we construct the spectral scheme by
using spherical harmonic functions. In Section 3, we list a series of lemmas which play
a fundamental role in the theoretical analysis. Finally we prove strictly the generalized
stability and the convergence of this method in Section 4 and Section 5 respectively.
- The technique used in this paper is also applicable to other nonlinear problems in

I'

- spherical polar coordinates.
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2. The Spectral Scheme

Let S be the unit spherical surface,

S = {(,\,9)/0 < A-é o, —g <0< -g}

where A and @ are the longitude and the latitude. Let £(A,0,t),4(A,0,t) and 2 > 9
be the vorticity, the stream function and the angular velocity of the earth respectwely
The gradient, the Jacobi operator and the Laplace operator are as follows: |
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The barotropic vorticity equation on S is as follows:

s, 8 |
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Ay =&, (A,0) € S,t € [0,T],

(X, 0,0) = &o(A, 0), (A,0) € S,
where the initial value &g(A, #) is given. For fixed 9, we require |

u(p(®) = [ #(\0,0ds =0 23)

We shall consider the weak representation of (2.1). Let, D(S) be the set of all
infinitely differentiable functions which are regular at 6 = _5 and have the period 21 g

for the variable . The duality of D(S) is denoted by D'(S). We define the genera.hzeﬂ,g
function u € D’'(S) and its derivatives in the usual way as in [12]. Furthermore, wei
can define the generalized gradient, the generalized Jacobi operator and the genera.hzed ;i

Laplace operator. For instance, if

[[ ulAvdS = j] vudS, Vv € D(S),
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then the mapping A such that @ = Au is called the generalized Laplace operator. Fm'
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simplicity, we denote A by A, etc..
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Now, let ﬂ
4

_ L3(S) = {u € D/(S)/|lull < oo}
be equipped with the inner product a.ndthenorm as follows:
(4, ) = ffs wdS, = 6, 9%
Furthermore, .

T
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H'(S) = {ulu,




