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Abstract

In this paper, a nonmonotonic trust region method for optimization problems

with equality constraints is proposed by introducing a nonsmooth merit function

and adopting a correction step. It is proved that all accumulation points of the

iterates generated by the proposed algorithm are Kuhn-Tucker points and that the

algorithm is q-superlinearly convergent.

1. Introduction

Consider the nonlinear equality constrained optimization problem

min f(x), s.t. c(x) = 01.1

where f : Rn → R1 and c : Rn → Rm, m ≤ n. Recently, reduced Hessian methods

are proposed to solve this problem. Coleman and Conn[1], and Nocedal and Overton[6]

proposed separately similar quasi-Newton methods using approximate reduced Hessian.

However, such methods can not ensure global convergence and therefore are available

only when the initial starts are good enough.

Two basic approaches, namely the line search and the trust region, have been de-

veloped in order to ensure global convergence towards local minima (see [4] and [5]

for example). However, most of the methods based on these two approaches enforce a

monotonic decrease of a certain merit function at each step, and this can considerably

slow the convergence rate of the minimization process, especially in the presence of

steep-sided valleys (see [4], [5]). More recently, the nonmonotonic line search technique

for unconstrained optimization was proposed by Grippo, Lampariello and Lucidi[5].

Furthermore, the nonmonotonic technique has been developed into the trust region al-

gorithm for unconstrained optimization[4]. The nonmonotonic idea motivates the study

on the projected Hessian methods with trust region. In this paper, we describe and

analyze improved projected methods with nonmonotonic trust region for problem (1.1),
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introducing a nondifferentiable penalty function as a merit function and employing a

correction step which allows us to overcome phenomena similar to the Maratos effect.

Section 2 of this paper gives the improved projected Hessian method in association

with the nonmonotonic trust region in more detail. In Section 3, we state the global

convergence properties of the method, while in Section 4 we prove the local convergence

rate of the algorithm.

2. Algorithm

We first introduce some standard notations. Let ‖ ·‖ be the Euclidean norm on Rn.

Let f : Rn → R1 be twice continuously differentiable, with gradient g : Rn → R1 and

Hessian matrix ∇2f . Let c : Rm → Rn be the vector of twice continuously differentiable

constrained function ci(x), for i = 1, 2, · · · ,m; with the gradient of ci(x) denoted by

ai(x) and the Hessian matrix of ci(x) denoted by ∇2ci(x).

In the sequel, we adopt the notations

fk := f(xk), gk := g(xk), Hk := H(xk).

We first state the revised projected reduced Hession algorithms, in which, after a

moving vector pk is determined by using the two-sided projected Hessian technique of

Nocedal and Overton [6], a correction step will also be taken to make the performance

of the algorithm more satisfactory and to overcome the Maratos effect.

Let A(x) = ∇c(x) be the n×m matrix consisting of the column vectors ai(x), for

i = 1, · · · ,m. Assume A(x) has full column rank. Make a QR decomposition for A(x):

A(x) = [Y (x), Z(x)] [ R (x)0] = Y (x)R(x)2.1

where [Y,Z] is an orthogonal matrix and R(x) ∈ Rm×m is a nonsingular upper tri-

angular matrix. The columns of Y (x) ∈ Rn×m and Z(x) ∈ Rn×t, t = n − m, form

respectively a normalized basis of the range space R(A(x)) of A(x) and the null space

N(A(x)T ) of A(x)T , i.e.

A(x)T Z(x) = 0.2.2

Clearly,

Y (x)T Z(x) = 0, Y (x)T Y (x) = Im, Z(x)T Z(x) = It,

Y (x)Y (x)T + Z(x)Z(x)T = In.2.3

Let

L(x, λ) = f(x)− λT c(x)2.4

be the Lagrangian of problem (1.1), where λ is the solution vector of the least-squares

problem, called projective multiplier,

min
λ
‖A(x)λ− g(x)‖.


