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Abstract

The stability of symplectic algorithms is discussed in this paper. There are

following conclusions.

1. Symplectic Runge-Kutta methods and symplectic one-step methods with

high order derivative are unconditionally critically stable for Hamiltonian systems.

Only some of them are A-stable for non-Hamiltonian systems. The criterion of

judging A-stability is given.

2. The hopscotch schemes are conditionally critically stable for Hamiltonian

systems. Their stability regions are only a segment on the imaginary axis for

non-Hamiltonian systems.

3. All linear symplectic multistep methods are conditionally critically stable

except the trapezoidal formula which is unconditionally critically stable for Hamil-

tonian systems. Only the trapezoidal formula is A-stable, and others only have

segments on the imaginary axis as their stability regions for non-Hamiltonian sys-

tems.

1. Fundamental Definitions

Lemma 1. The solution of a linear ordinary differential equation with constant

coefficient Ẏ = AY is stable if all eigenvalues of A have nonpositive real parts and the

eigenvalues with null real part are single roots of the minimal polynomial.

The linear Hamiltonian system can be denoted as Ż = JSZ where Z = ( p̧q) , J =

(¸̧0 − EE0) , and the Hamiltonian function H(z) = z′sz2.

Lemma 2. The solutions of linear Hamiltonian systems are critically stable if all

eigenvalues of JS have null real part and are single roots of the minimal polynomial.

Definition 1. When the model equation Ẏ = AY is solved using a numerical

method, the method is A-stable if its stability region involves the whole left half plane.

Definition 2. When the linear Hamiltonian system Ż = JSZ is solved using

a one-step method, the one-step method is critically stable if all eigenvalues of the

amplification matrix have module 1 and are single roots of the minimal polynomial.
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Definition 3. When the linear Hamiltonian system Ż = JSZ is solved using a

multistep method, the multistep method is critically stable if all roots of the character-

istic equation are on the unit circle and are single roots.

2. The Stability of One-Step Symplectic Algorithms

When the one-step symplectic algorithms (such as symplectic Runge-Kutta meth-

ods, the one-step symplectic methods with higher order derivative) are used to solved

the model equation Ẏ = AY , in most cases the characteristic equation always has the

following form[1−2]:

ξ(µ) = P (µ)P (−µ)

where µ = hλ, λ stands for the eigenvalues of the matrix A and P is a polynomial with

real coefficient.

Theorem 1. The one-step method is unconditionally critically stable if the corre-

sponding characteristic equation can be expressed as ξ(µ) = P (µ)P (−µ).

Proof. When λ = iy, we have

ξ = P (µ)P (−µ) = P (ihy)P (−ihy) = P (ihy)P (ihy) = P (ihy)P̄ (ihy)

and

ξ = P̄ (ihy)P̄ (−ihy) = P̄ (ihy)P (ihy).

Therefore ξ · ξ = 1. The above relationship holds as long as λh is on the imaginary

axis, so there is no restriction on h.

Theorem 2. If all poles of ξ(w) are on the right half plane, then the corresponding

one-step symplectic method is A-stable.

Proof. .Unconditional critical stability means ξ = P (µ)P (−µ) = 1 as long as

µ = λh = iyh, where −∞ < y < ∞.

If all poles of ξ are on the right half plane, then ξ is an analytical function on the

left half plane. According to the maximum module principle we have ξ(µ) < 1 as long

as Re(µ) < 0.

Example 1. The midpoint formula yn+1 = yn + hf(yn + yn+12) and trapezoidal

formula yn+1 = yn + h2(f(yn) + f(yn+1)) have the same characteristic equation ξ =

1 + µ1 − µ, so they are unconditionally critically stable and A-stable. The symplectic

schemes, whose characteristic equations are diagonal Pade approximation, are the same

(such as s-stage Runge-Kutta methods with order 2s + 2).

Example 2. The composite symplectic schemes of order 4.[3]
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