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Abstract

In this report we present some new numerical methods for unconstrained op-

timization. These methods apply update formulae that do not satisfy the quasi-

Newton equation. We derive these new formulae by considering different techniques

of approximating the objective function. Theoretical analyses are given to show the

advantages of using non-quasi-Newton updates. Under mild conditions we prove

that our new update formulae preserve global convergence properties. Numerical

results are also presented.

1. Introduction

Unconstrained optimization is to minimize a nonlinear function f(x) in a finite

dimensional space, that is

min
x∈Rn

f(x) . (1.1)

Newton’s method for problem (1.1) is iterative and at the k−th iteration a current

approximation solution xk is available. The Newton step at the k−th iteration is

dk = −(∇2f(xk))
−1∇f(xk) . (1.2)

One advantage of Newton’s method is that it convergence quadratically. Assume x∗ is

a stationary point of (1.1) at which ∇2f(x∗) is non-singular. Then for xk sufficiently

close to x∗ we have that

||xk + dk − x∗|| = O(||xk − x∗||2) . (1.3)

However Newton’s method also has some disadvantages. Firstly the Hessian ∇2f(xk)

may be singular, in that case the Newton step (1.2) is not well defined. Secondly when

∇2f(xk) is not positive definite the Newton step dk may not necessarily be a descent
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direction of the objective function. Thirdly the calculation of the Hessian ∇2f(xk)

may be very expensive especially for large scale problems, not to mention that for some

problems the Hessian of f(x) is not available.

Quasi-Newton methods are a class of numerical methods that are similar to New-

ton’s method except that the Hessian (∇2f(xk))
−1 is replaced by an n × n symmetric

matrix Hk which satisfies the “quasi-Newton” equation

Hkyk−1 = sk−1 (1.4)

where

sk−1 = xk − xk−1 = αk−1dk−1 (1.5)

yk−1 = ∇f(xk) −∇f(xk−1) , (1.6)

and αk−1 > 0 is a step-length which satisfies some line search conditions. Assume Hk

is nonsingular, we define Bk = (Hk)
−1. It is easy to see that the “quasi-Newton step”

dk = −Hk∇f(xk) (1.7)

is a stationary point of the following problem:

min
d∈Rn

φk(d) = f(xk) + dT∇f(xk) +
1

2
dT Bkd (1.8)

which is an approximation to problem (1.1) near the current iterate xk, since φk(d) ≃
f(xk + d) for small d. In fact, the definition of φk(.) in (1.8) implies that

φk(0) = f(xk), (1.9)

∇φk(0) = ∇f(xk), (1.10)

and the quasi-Newton condition (1.4) is equivalent to

∇φk(xk−1 − xk) = ∇f(xk−1) . (1.11)

Thus, φk(x − xk) is a quadratic interpolation of f(x) at xk and xk−1, satisfying con-

ditions (1.9)-(1.11). The matrix Bk (or Hk) can be updated so that the quasi-Newton

equation is satisfied. One well known update formula is the BFGS formula which

updates Bk+1 from Bk, sk and yk in the following way:

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

. (1.12)

In Yuan (1991), approximate function φk(d) in (1.8) is required to satisfy the inter-

polation condition

φk(xk−1 − xk) = f(xk−1) , (1.13)


