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Abstract

We analyze the convergence of multigrid methods applied to finite element
equations of second order with singularities caused by reentrant angles and abrupt
changes in the boundary conditions. Provided much more weaker demand of clas-
sical multigrid proofs, it is shown in this paper that, for symmetric and positive
definite problems in the presence of singularities, multigrid algorithms with even
one smoothing step converge at a rate which is independent of the number of lev-
els or unknowns. Furthermore, we extend this result to the nonsymmetric and
indefinite problems.

1. Introduction

Multigrid Methods provide optimal order solvers for linear systems of finite ele-
ment equations arising from elliptic boundary value problems. The convergence of
multigrid methods was proved by many authors[2−6,9−12]. All these proofs, require
strong regularities and quasi-uniformity of grids[3,10]. For example, assuming H1+α

regularity and quasi-uniform triangulations, Bank & Dupont[3] showed a convergence
rate of O(m

−α
2 ), for a growing number m of smoothing steps per level. In the optimal

case α = 1, the problem has to be H2–regular. When the region has reentrant angles
or abrupt changes in the boundary condition, H2–regularity is violated, and in addi-
tion, the approximation properties of the finite element space deteriorate because of
the presence of singularities not captured by the quasi-uniform grids.

Yserentant[11] proved the convergence of multigrid methods for symmetric and def-
inite problems with singularities. However, a sufficiently large number of smoothing
steps m was required. Shangyou Zhang[12] got the similar result using nonnested multi-
grid methods, but it also assumed that m is larger than a certain constant. In this
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work, we prove the convergence of multigrid methods for symmetric and definite prob-
lems with singularities of even one smoothing step. Furthermore, it is shown in this
paper that, multigrid methods applied to indefinite and nonsymmetric problems also
converge on nonquasiuniform grids.

The outline of the remainder of the paper is as follows.
In section 2, we define a weighted function φr(x) and a family of triangulations

governed by φr(x) , and describe a j-level multigrid iterative procedure. An important
lemma is given in section 3. In section 4, we prove our multigrid convergence theorems.
We provide some results for nonsymmetric and indefinite problems with singularities
in section 5.

Throughout this paper, c and C will denote generic positive constants which may
take on different values in different places. These constants will always be independent
of the mesh parameters.

2. Notation and Multigrid Scheme

For simplicity, we consider the model problem

−∆u + u = f, in Ω,

u = 0, on ΓD,
∂u

∂n
= 0, on ΓN ,

(1)

where Ω is an open bounded polygonal domain in R2 with the boundary subdivided
into two parts ΓD and ΓN . Let xi, 1 ≤ i ≤ M, denote the vertices of Ω with θi, where θi

is the interior angle of Ω at xi. Because of possible changes in the boundary conditions,
the case θi = π is permitted. Let 0 < θi < 2π . For each vertex xi, we define ki = 1
if the two sides of xi belong either both to ΓD or both to ΓN , and ki = 1/2 otherwise.
Let αi = min(1, (kiπ)/θi), then 1/4 ≤ αi ≤ 1 holds. If we have pure Dirichlet or
Neumann boundary conditions, αi < 1 only holds for reentrant angles. We choose ri

with 1− αi ≤ ri < 1 if αi < 1, and ri = 0 if αi = 1. Define

φr(x) =
M∏

i=1

| x− xi |ri (2)

for r = (r1, r2, . . . , rM ), where | x | denotes the Euclidean norm. We assume that the
family T0, Ti . . .of triangulations has the following two properties[1]: Let τ ∈ Tj be a
triangle, then

chjφr(x) ≤ d(τ) ≤ chjφr(x), if φr(x) 6= 0, ∀x ∈ τ, (3)

chj max
x∈τ

φr(x) ≤ d(τ) ≤ chj max
x∈τ

φr(x), if φr(x) 6= 0 for some x ∈ τ. (4)


