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Abstract

In this paper, we propose a new definition of symplectic multistep methods.
This definition differs from the old ones in that it is given via the one step method
defined directly on M which is corresponding to the m step scheme defined on M
while the old definitions are given out by defining a corresponding one step method
on M×M×· · ·×M = Mm with a set of new variables. The new definition gives out
a steptransition operator g : M −→ M . Under our new definition, the Leap-frog
method is symplectic only for linear Hamiltonian systems. The transition operator
g will be constructed via continued fractions and rational approximations.

Key words: Multi-step methods, Explike and loglike function, Fractional and ra-
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1. Introduction

The disadvantage of symplectic methods in using the information from past time
steps leads to their needing more function evaluation than nonsymplectic methods. This
disadvantage can be overcome if one could construct symplectic multi-step methods.
But the first problem should be solved is to give out the definition of symplectic multi-
step method. Until now, a popular idea is that an m-step method on M may be
written as a one-step method on Mm. In paper [2, 7], the authors have investigated
the circumstance under which a difference scheme can preserve the product symplectic
structure on Mm. In this paper, a completely different criterion is given because the
induced one-step method corresponding to the original multi-step method is defined, it
gives out a transition operator g : M −→ M .

Consider the autonomous ODE’s on Rn

dz

dt
= a(z), (1.1)

where z = (z1, · · · , zn) and a(z) = (a1(z), · · · , an(z)) is a smooth vector field on Rn

defining the system. For equation (1.1), we define a linear m step method (LMM) in
standard form by

m∑

j=0

αjzj = τ
m∑

j=0

βjaj , (1.2)
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where αj and βj are constants subject to the conditions

αm = 1, |α0|+ |β0| 6= 0.

If m = 1, we call (1.2) a one step method. In other cases, we call it a multi-step method.
Here linearity means the right hand of (1.2) linearly dependent on the value of a(z) on
integral points. For the compatibility of (1.2) with equation (1.1), it must at least of
order one and thus satisfies

1◦. α1 + α2 + · · ·+ αm = 0.

2◦. β0 + β2 + · · ·+ βm =
m∑

j=0

jαj 6= 0.

LMM method (1.2) has two characteristic polynomials

ζ(λ) =
m∑

i=0

αiλ
i, σ(λ) =

m∑

i=0

βiλ
i. (1.3)

Equation (1.2) can be written as

ζ(E)yn = τa(σ(E)yn). (1.4)

In section 2, we will study symplectic multi-step methods for linear Hamiltonian
systems. We will give a new definition via transition operators which are corresponding
to the multi-step methods. We will point out that if these operators are of exponential
forms and their reverse maps are of Log forms then the original multi-step method are
symplectic. In section 3, we will use continued fractions and rational approximations
to approximate the transition operators. In section 4, we show that for non-linear
Hamiltonian systems, there exists no symplectic multi-step methods in the sense of our
new definition. Numerical examples are also presented.

2. Symplectic LMM for Linear Hamiltonian Systems

First we consider a linear Hamiltonian system

dz

dt
= az, (2.1)

where a is an infinitesimal n× n symplectic matrix. Its phase flow is z(t) = exp(ta)z0.
The LMM for (2.1) is

αmzm + · · ·+ α1z1 + α0z0 = τa(βmzm + · · ·+ β1z1 + β0z0). (2.2)

Our goal is to find a matrix g, i.e., a linear transformation g : R2n −→ R2n which
can satisfy (2.2)

αmgm(z0) + · · ·+ α1g(z0) + α0z0 = τa(βmgm(z0) + · · ·+ β1g(z0) + β0z0). (2.3)

Such a map g exists for sufficiently small τ and can be represented by continued fractions
and rational approximations. We call this transformation is step transition operator.


