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Abstract

The finite element solutions of elliptic eigenvalue equations are shown to have
a multi-parameter asymptotic error expansion. Based on this expansion and a
splitting extrapolation technique, a parallel algorithm for solving multi-dimensional
equations with high order accuracy is developed.
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1. Introduction

The extrapolation method has become an important technique to obtain more ac-
curate numerical solutions since it was first established by Richardson in 1926. The
applications of extrapolation method in the finit difference can be found in [14]. In 1983,
Q.Lin, T.Lü and S.Shen[8] introduced this technique into the finite element method, the
development in this direction can be found in [5, 11, 12, 16]. However, this technique
has a limitation when dealing with high dimentional problems, since the increasing
of the dimension will cause an enormous amount of grid points which requires great
computer power in case of the successive refinement. Recently, Zhou et al.[19,20] intro-
duce a so called multi-parameter splitting extrapolation method. In this new method,
the domain is divided into several subdomains based on the geometry of the domain,
each of which is covered by different meshes so that the number of independent mesh
parameters, say p, is as large as possible, and a higher order accuracy approximation
is produced by (p + 1)-processors in parallel. In general, p can be greater than the
dimension of the problem. As a result, if the size of the original discrete problem is
large, then the size of problems to be dealt with in each processor can be reduced
significantly. In this paper, we adopt this method to the elliptic eigenvalue problem, a
parallel algorithm for higher order approximations is also proposed.

2. Multi-Parameter Asymptotic Expansion for Eigenvalue

In this section, we only investigate simple eigenvalue problems for elliptic equations,
so that we can concentrate on the main idea behind the construction without involving
much effort in less important things, let us consider the Dirichlet problem
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{ −4u = λu, in Ω,

u = 0, on ∂Ω,
(2.1)

where Ω = (0, 1)n ⊂ Rn(n ≥ 2).
Its weak form reads as follow: find (λ, u) ∈ R× (H1

0 (Ω)\{0}) such that

a(u, v) = λ(u, v), ∀v ∈ H1
0 (Ω), (2.2)

where a(u, v) =
∫

Ω
∇u∇v, and (f, v) =

∫

Ω
fv,

∫

Ω
· =

∫

Ω
·dx1 · · · dxn.

Let Ω be divided into m rectangular subdomains T = {Ωj : j = 1, 2, · · · ,m} so
that the edges of each subdomain are parallel to the coordinate axe respectively and
T is quasi-uniform. On the subdomain Ωj , a rectangular mesh refinement with mesh
parameters {hj,1, · · · , hj,n} is imposed, where 2hj,i is the mesh size in the ith coordinate
direction. Assume that the union of all meshes form a quasi-uniform n−rectangular
partition T h of Ω with size h, then T h is determined by some mesh parameters, say
h1, · · · , hp, with h = max{hi : i = 1, · · · , p} and n ≤ p ≤ n + m − 1. To minimize the
sizes of the discrete subproblems, p may be chosen such that p > n.

Let Sh(Ω) = {v ∈ C(Ω): v|e is n-linear, ∀e ∈ T h}, Sh
0 (Ω) = Sh(Ω) ∩ H1

0 (Ω), and
ih : C(Ω) −→ Sh(Ω) be the usual n−linear interpolation operator.

The finite element approximation of eigenvalue problem is determined by finding
(λh, uh) ∈ R× (Sh

0 (Ω)\{0}) satisfying

a(uh, ϕ) = λh(uh, ϕ), ∀ϕ ∈ Sh
0 (Ω). (2.3)

For continuous eigenvalue λ, there holds an orthonormal eigenfunction u and dis-
crete solutions (λh, uh) ∈ R× Sh

0 (Ω) such that

|λ− λh|+ ‖u− uh‖0,2 ≤ ch2‖u‖2,2, (2.4)

where ‖ · ‖0,2 denotes the usual Soblev space, we also denote it by ‖ · ‖ in the following.
For simplicity, assume that T h|Ωi is uniform and u is smooth enough. We denote Rhu

to be the Ritz projection of u which is determined by the equation
∫

Ω
5(u−Rhu)5 v = 0, ∀v ∈ Sh

0 (Ω).

For e ∈ T h, denote the center of e by xe = (xe,1, · · · , xe,n) and e =
n∏

j=1
[xe,j − he,j ,

xe,j + he,j ]. For 1 ≤ j ≤ n, define

Fe,j(xj) =
1
2
((xj − xe,j)2 − h2

e,j).

From the definition of Fe,j(xj), we easily get the following useful identity

Fe,j =
1
6
(F 2

e,j)
′′ − 1

3
h2

e,j . (2.5)

We recall that there holds the following multi-parameter expantion (cf.[19,20]).


