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Abstract

In the Stratonovich-Taylor and Stratonovich-Taylor-Hall discretization schemes
for stochastic differential equations (SDEs), there appear two types of multiple
stochastic integrals respectively. The present work is to approximate these multiple
stochastic integrals by converting them into systems of simple SDEs and solving
the systems by lower order numerical schemes. The reliability of this approach is
clarified in theory and demonstrated in numerical examples. In consequence, the
results are applied to the strong discretization of both continuous and jump SDEs.

Key words: Brownian motion, Poisson process, stochastic differential equation,
multiple stochastic integral, strong discretization.

1. Introduction

For the strong discretization of SDEs, any numerical method which only depends
on the values of Brownian paths or Poisson paths at the partition nodes cannot achieve
an order higher than 0.5 in general[2,4,8]. Therefore the evaluation of multiple stochastic
integrals on the intervals between nodes is a major obstacle that must be overcome.
Some attempts have been made previously in different approaches to approximate mul-
tiple stochastic integrals. [2] suggests an approximation in terms of Fourier Gaussian
coefficients of the Brownian bridge process. As the layer of integration increases, the
treatment becomes complicated and the computation is laborious to generate a lot of
independent Gaussian random variables. For 2-dimensional Brownian motions, Gaines
and Lyons applied in [1] the Marsaglia rectangle-wedge-tail method to generate stochas-
tic area Ito integrals. However this method is not easy to be extended to general cases.

[6] indicates to model multiple Ito integrals by the rectangular rule, the trapezoidal
rule as well as the Fourier method with the discussion of how small the time step
should be taken to ensure the necessary accuracy. Our approach is in some sense
the systematization and development of Milstein’s work. In section 2, we propose to
treat multiple stochastic integrals as systems of SDEs which can be solved by STH
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scheme of lower order. The results will be applied to the strong discretization of the
Ginzburg-Landau system driven by both Brownian motion and Poisson process.

2. The Approximation of Multiple Stochastic Integrals

Let M be the set of the empty index and all multiple indices α = (α1, · · · , αl)
such that αi ∈ {−1, 0, · · · ,m} for i = 1, · · · , l. For α = (α1, · · · , αl), define |α| = l,
(α) = #{αi : αi = 0}, ‖α‖ = |α|+ (α). For a square integrable Ft-predictable process
ft, define the multiple Stratonovich integrals Jα,ρ,τ recursively by

Jα[f ]ρ,τ =





∫ τ+

ρ
Jα−[f ]ρ,sdN−αl

s if αl = −1

∫ τ

ρ
Jα−[f ]ρ,sds if αl = 0

∫ τ

ρ
Jα−[f ]ρ,sdWαl

s if αl > 0

(2.1)

and agree that Jα[f ]ρ,τ = fτ when α is the empty index φ.
Let Br(L−2, L0, · · · , Lm) be the set of all formal brackets of the indeterminates

L−2, L0, · · · , Lm. The meaning of Lj will be clarified in section 3. For B ∈ Br(L−2, L0, · · ·,
Lm), the degree |B| is defined recursively by |B| = |B1| + B2| and |Li| = 1, i =
−2, 0, · · · ,m. Let B ⊂ Br(L−2, L0, · · · , Lm) be a Philip Hall basis of L(L−2, L0, · · · , Lm)
with a total order ¹ such that L−2 is the first element with respect to ¹. For any
B = (ad(B1))j(B2) ∈ B with B1 6= B2, we define, as in [3], the stochastic integral

CB,ρ,τ =
∫ τ

ρ
cB,ρ,t (2.2)

where cB,ρ,t is defined recursively by

cB,ρ,t =
1
j!

Cj
B1,ρ,tcB2,ρ,t (2.3)

with

cLj ,ρ,t =

{
dt, j = 0

◦dWt, j ∈ {1, · · · ,m} (2.4)

and
cL−2,ρ,t = dNt. (2.5)

Define

V j
t =





1
(τ − ρ)1/2

N(1−t)ρ+tτ , j = −1,

(1− t)ρ + tτ

τ − ρ
, j = 0,

1
(τ − ρ)1/2

W j
(1−t)ρ+tτ , j = 0, · · · ,m,

(2.6)


