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CONVERGENCE OF CHORIN-MARSDEN FORMULA FOR THENAVIER-STOKES EQUATIONS ON CONVEX DOMAINS�Lung-an Ying(Researh Institute for Mathematial Sienes, Kyoto University, Japan;Department of Mathematis, Peking University, Beijing 100871, China)AbstratWe prove the onvergene of the Chorin-Marsden produt formula for solv-ing the initial-boundary value problems of the Navier-Stokes equations on onvexdomains. As a partiular ase we onsider the ase of the half plane.Key words: Navier Stokes equation, Vortex method, Frational step method, Con-vergene 1. IntrodutionDi�erent kinds of frational step methods have been applied to solve the initial-boundary value problems of the Navier-Stokes equations for visous inompressibleow. The vortex method developed in [5℄ by Chorin is a sheme with three intermediatesteps where the e�ets of onvetion and visosity are separated, and vortex sheets arereated along the boundary. A set of vortex blobs is introdued to approximate thevortiity �eld. These vortex blobs move along the partile trajetories in the onvetionstep, and they move randomly in the di�usion step. The onvergene of the sheme isan interesting problem whih has alled the attention of many authors.Related to this sheme, the splitting of the initial-boundary value problems of theNavier-Stokes equations to the orresponding problems of the Euler equations and theStokes equations has been extensively studied, see [2℄ [3℄ [7℄ [9℄ [10℄ [11℄ [12℄ [13℄ [14℄and the referenes therein. By the results a simple splitting onverges in Lp; p < 1,and in Hs; s < 52 , and if the vortex sheets are smeared out suh that the vortiity issmooth, then the sheme with some modi�ation still onverges.Marsden gave one mathematial formulation of Chorin's sheme whih is a produtof three operators, uk(ik) = (Hk Æ � ÆEk)iu0;where u0 is the initial data, Ek is the loal ow de�ned by the Euler equations withtemporal step k, � is the \vortiity reation operator", and Hk is the solver of theheat equation with step k. This formula is known as the Chorin-Marsden formula[6℄.It involves a further approximation beyond the splitting. In [6℄ the veloity �eld isextended oddly to the exterior of the domain and the Cauhy problem of the heat� Reeived July 10, 1996.



74 L.A. YINGequation for the veloity is solved in the di�usion step rather than the initial-boundaryvalue problem of the Stokes equation . This approximation is onsistent to the randomwalk proedure. Convergene of the linear problems was proved in [6℄. Benfatto andPulvirenti studied the Chorin-Marsden formula in the ase of the half plane for theNavier-Stokes equations and proved the onvergene[4℄. The sheme in [4℄ is di�erentfrom that in [6℄ by two respets: The tangential omponent of the veloity is alsoextended oddly but the normal omponent is extended evenly, and an expliit Eulersheme is applied in the onvetion step rather than using the partile method. The�rst modi�ation bears the advantage that the veloity �eld keeps inompressible afterthe extension.The purpose of this paper is to prove the onvergene of the Chorin-Marsden for-mula for arbitrary two dimensional onvex domains. In the onvetion step we usethe veloity of the previous step to slove the partile trajetories, making the step infat linear. In the di�usion step we use a modi�ed approah to extend the veloity.Partiularly if the domain is the half plane then the extension here is the same as thatin [6℄.In setion 2 we state the sheme in details and introdue some notations. In setion3 we prove the onvergene of the sheme for onvex domains, where for simpliity weassume that the domains are bounded. In setion 4 we apply our approah to the ase ofthe half plane, and we will show that both approahes of extension, by Chorin-Marsdenand by Benfatto and Pulvirenti, yield the results of onvergene.2. ShemeLet 
 � R2 be a domain with suÆiently smooth boundary �
 and x = (x1; x2) bethe points in R2. We onsider the following initial-boundary value problems,�u�t + (u � r)u+ 1�rp = � 4 u+ f; (1)r � u = 0; (2)uj�
 = 0; (3)ujt=0 = u0; (4)where u = (u1; u2) is the veloity, p is the pressure, f is the external fore, � is theonstant density, � is the onstant kinemati visosity, and r = ( ��x1 ; ��x2 ). We intro-due the vortiity ! = �r^ u and the stream funtion  suh that u = r^  , wherer^ = ( ��x2 ;� ��x1 ), then the vortiity-stream funtion formulation of the problems is�!�t + u � r! = � 4 ! + F; (5)�4 = !;  j�
 = 0; � �n �����
 = 0; (6)u = r^  ; (7)!jt=0 = !0; (8)


