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Subspa
e Sear
h Method for Quadrati
 Programming with BoxConstraints�1)Zi-luan Wei(ICMSEC, Chinese A
ademy of S
ien
es, Beijing 100080, China)Abstra
tA subspa
e sear
h method for solving quadrati
 programming with box 
on-straints is presented in this paper. The original problem is divided into manyindependent subproblem at an initial point, and a sear
h dire
tion is obtained bysolving ea
h of the subproblem, as well as a new iterative point is determined su
hthat the value of obje
tive fun
tion is de
reasing. The 
onvergen
e of the algorithmis proved under 
ertain assumptions, and the numeri
al results are also given.Key words: Subspa
e sear
h method, Quadrati
 programing, Matrix splitting1. Introdu
tionIn this paper, we 
onsider the problem of minimizing a quadrati
 
onvex program-ming with box 
onstrained variables:Minf(x)s.t.x 2 
 (1.1)where 
 = f x 2 Rn: l � x � ug, f(x) = 12xTHx+ bTx, and H is an n by n symmetri
positive de�nite matrix, and b; l; u are given 
onstant ve
tors in Rn.This problem arises in several areas of appli
ations, su
h as optimal 
ontrol anddisign engineering, linear least square problem with bounded variables and implemen-tation of robust method for nonlinear programming, et
. Many su

essful algorithmsfor solving this type of large s
ale problem have been studied based on a
tive set strate-gies. A popular approa
h is to use an a
tive-set algorithm that solves a sequen
e ofsubproblems of the form Min f(x+ d) s.t. di = 0; i 2 Vk (1.2)where Vk is the index set of a
tive 
onstraints, indi
ating the set of varaibles that wouldremain �xed at one of their bounds. Obviously, it is ne
essary to identify a 
andidatea
tive set, and to solve the problem (1.2) exa
tly in the a
tive set algorithm. Espe
ially,� Re
eived O
tober 4, 1996.1)This resear
h supported partially by The National Natural S
ien
e Foundation of China(No.19771079) and State Key Laboratory of S
ienti�
 and Engineering Computing.



308 Z.L. WEIobtaining the exa
t minimizer of (1.2) may require many 
onjugate gradient iterations,and adding 
onstaints at a time to the working set may lead to an ex
essive number ofiterations for large s
ale problem. In order to avoid the above disadvantages, a di�erenttype of algorithm, based on the gradient proje
tion, and 
ombination of the gradientproje
tion with 
onjugate gradient, have been proposed by several authors. Thesealgorithms have �nite 
onvergen
e if the problem is stri
tly 
onvex and the solutionis nondegenerate[12℄. A similar algorithm 
ombines 
onjugate gradient with gradientproje
tion te
hnique, and uses a new strategy for the de
ision of leaving the 
urrentfa
e and make it possible to obtain �nite 
onvergen
e even for a singular Hessian andin the presen
e of dual degenera
y[7℄. A primal-dual interior point algorithm is alsoused to solve large problem (1.1), and the numeri
al experiments have shown that thealgorithm requires only a few steps and is very eÆ
ient[9℄.In this paper, we present a subspa
e sear
h method for solving the problem (1.1).The main steps of the algorithm are to divide the problem (1.1) into independentsubproblems at an initial feasible point and solve ea
h of these subproblems to obtaina sear
h dire
tion, and then to determine a new feasible iterative point su
h thatthe obje
tive fun
tion is de
reasing. The 
onvergen
e of the algorithm is proved under
ertain assumptions. The main feature of the algorithm is that large s
ale problom (1.1)
an be transformed into many small independent subproblems, and all the subproblems
an be solved simultaneously.This paper is organized as follows. In Se
tion 2 we des
ribe the algorithm. The
onvergen
e results are proved under 
ertain assumptions and numeri
al results arealso given in Se
tion 3. 2. Derivation of the AlgorithmNow we 
onsider the problem (1.1). Without loss of generality, assume that ve
torx 2 Rn 
an be divided into (xT1 ; xT2 ; � � � ; xTt ), and xi 2 Rni , and that n1 = n2 = � � � = ntand tni = n. A

ordingly, matrix H and ve
tors b; l; u 
an be also subdivided intot � t blo
k submatri
es Hij(Hij 2 Rni�ni ; i; j = 1; 2; � � � ; t) and subve
tors bi; li; ui(bi; li; ui 2 Rni , i = 1; 2; � � � ; t); respe
tively. Therefore, the obje
tive fun
tion f(x) 
anbe rewritten as follows. f(x) = 12 tXi=1 tXj=1xTi Hijxj + tXi=1 bTi xi (2.1)Assume that an initial ve
tor �x 2 
 is a stri
tly interior point, that is, l < �x < u, andthat x belongs to the neighborhood of �x, then we havex = �x+ (x� �x) (2.2)Substituting (2.2) into (2.1), it is easy to derive thatf(x) = 12 tXi=1 �xTi b̂i + tXi=1(xi � �xi)T�bi + 12 tXi=1 tXj=1(xi � �xi)THij(xj � �xj) (2.3)


