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Abstract

In this paper, an optimal V-cycle multigrid algorithm for some famous noncon-
forming plate elements is established.
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1. Introduction

Multigrid methods have become some of the most powerful methods for solving par-
tial differential equations discretized by the finite element and finite difference methods.
(cf. [7][11][14] and reference therein). Multigrid methods for the nonconforming finite
elements have been studied by some reseachers recently. For the second order problems,
some optimal multigrid methods for the P1 nonconforming element and the Wilson
nonconforming element have been established.(cf.[5][18][22]). Mutilgrid methods for
biharmonic problem have also attracted many reseachers attention, in [9][12][17], the
authors presented some optimal order multigrid methods for the Morely element, but
only considered W-cycle multigrid. In [21], Zhang proposed a V-cycle multigrid for
Bonger-Fox-Schmit (BFS) conforming plate element, the convergence of the method
rests on the nestness of the mesh spaces. But until now effictive V-cycle multigrids for
the nonconforming plate elements have not been constructed.

The purpose of this paper is to develop an optimal and effective V-cycle multigrid
method for some well-known nonconforming finite elements such as the Morley element,
the Adini elemet. The basic idea is that no matter how finite element spaces we deal
with, we insist on using the Powell-Sabin (PS) finite element space as correction space
on the level | (I = 1,...,L — 1). The V-cycle multigrid method for the nonconforming
plate elements needs smooth enough steps on the last level L, but on the coarse mesh
I (I =1,...,L — 1) only needs smooth one step. Moreover, because we use the PS
finite element as coarse mesh spaces(l = 1..., L — 1), the intergrid transfer operator only
choose the most simple interpolation opertor, the computation become very cheap.
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2. Plate Bending Problem and Nonconforming Elements

Let © be a convex polygonal domain in R?, the variational form of the plate bending
problem is defined as follows: Find u € HZ(Q)( cf. [10] for Sobolev space notations)
such that

a(u,v) = (f,v), Yo e HX(Q), (2.1)

where f is a function on L?(f2) and
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(f.0) = [ foda.

and 0 < o < % is the Possion ratio. It is well-known that (2.1) has a unique solution
u € HZ(Q), and
a(u,v) < Clula|v|a, Vu,v € HE(Q), (2.2)

a(v,v) > Clof3, Vv € Hg(9), (2.3)

where | - |3 is seminorm over space H?(f2).

Throughout this paper, ¢, C always denote strictly positive constant independent
of h and L.

We assume the following elliptic regularity for the problem (2.1). For any f €
H () =(HL(Q)), there exists a solution u € H*(Q2) N HZ(£2) and

[ulls < C[If][-1.

It was proved in [2] that the above assumption is true if €2 is a convex polygonal domain.
We assume that I'j, is a quasiuniform triangular or rectangular partition of €2, let
Vi, C L?(Q) be a finite element space with respect to T'j,. Define
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and
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Kel'y,

We assume that the above definitions satisfy:
(H1) (1). ap(u,v) < Clulaplvlan, VYu,v € Vp,
(2). ap(v,v) > C|v|2h,Vv € Vi,
(3). |u\2h is a norm over Vj,.
(4). Dy(u,v) < Chlulslv|on, Yu € H}(Q), v € Vj, and

0%u . Ov 0%u v
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where T and n denote the unit tangential and outward normal vector along 0K .



