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Abstract

A finite difference scheme for the generalized nonlinear Schrédinger equation
with variable coefficients is developed. The scheme is shown to satisfy two conser-
vation laws. Numerical results show that the scheme is accurate and efficient.

Key words: Finite difference scheme, Schrédinger equation, Discrete energy method.

1. Generalized Nonlinear Schrodinger Equation

The Schrodinger equation has been extensively used in physics research, particularly
in the modeling of nonlinear dispersion waves [8]. Numerical methods for solving the
Schrodinger equation have been discussed in the literature. In this article, we consider
a generalized nonlinear Schrodinger equation with variable coeflicients

’L% — %(A(x)%) +iF(t)u+ B(z) [ulf tu=0, i*=-1, p>1, (1)
where u(z,0) = ¢(z). The coeflicients A(z), F'(t) and B(x) are real functions with
A(z) > 0, and ¢(z) a sufficiently smooth function which vanishes for sufficiently large
|z|. The solution u(z,t) is a complex-valued function defined over the whole real line R.
The above equation is a generalized case of those equations described in the literature
(2,3,7]. In [2,3] the authors considered that the coefficient of w (which is the third
term on the left-hand side of the Eq. (1)) was a real function rather than a complex
function iF'(¢). We find in the next text that the conservation laws for these two cases
are different. In [7] the authors considered that the coefficient of u was a constant
complex number v rather than a complex function ¢F'(t). When F(t) = v > 0, there
is a strong dissipative term resulting in amplitude decay of the soliton for the problem
of propagation of a single soliton. However, the obtained numerical scheme produced
small ripples for solving the propagation of a soliton [7]. Authors in [7] pointed out
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that as a result of the ripple effect in the numerical solution other methods should be
explored.

To derive two conservation laws for Eq. (1), we first let u = we™ JE®dt ¢ eliminate
the term ¢F(t)u. For convenience, we assume here that [ F(t)dt = 0 when F(t) = 0.
As such, one obtains

Ow 0 ow _ _
i — 5o (A@)50) + Bla)e @ TO% Py = 0. 2)

Multiplying Eq. (2) by @ (which is the conjugate of w), integrating over the whole real
line and taking the imaginary part, one obtains

Im/ (z—w = (Ala )gj)w + B(z)e 1) [P |w|P+1> di = 0,

Since
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then % Ir |w|? dz = 0 from the imaginary part. Here, w is zero in the limit at +oo since

= /Axa—wa—wdx
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the initial condition ¢(z) is a sufficiently smooth function and vanishes for sufficiently
large |z|. Replacing w by uel POt , we obtain 4 ( 2[F® dtf |ul? dw) = 0. Hence, the
first conservation law can be written as follows.

/R|u(x,t)|2dx:/R|¢(x)|2dx-e*2fF<t>dt. (3)

It can be seen from Eq. (3) that the first conservation law is the same as that obtained

in the literature [7,8,10,11,12] if F'(¢) = 0 or constant v.

We now multiply Eq. (1) by %, integrate over R and take the real part to obtain
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+ B(ac)ef(p*l)fF(t)‘]llt |w|p_1waa—1:> dr =0. (4)




