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Abstract

In this paper, we develop the cascadic multigrid method for parabolic problems.
The optimal convergence accuracy and computation complexity are obtained.
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1. Introduction

Bornemann and Deuflhard [2][3] have presented a new type of multigrid methods,
the so-called cascadic multigrid. Compared with usual multigrid methods, it requires
no coarse grid corrections at all that may be viewed as a ”one way” multigrid. Another
distinctive feature is performing more iterations on coarser levels so as to obtain less
iterations on finer levels. Numerical experiments show that this method is very effective
for second order elliptic problems.

In the paper, we will consider the cascadic multigrid for parabolic problems. Here
we must treat the effect of the time discrete step. As pointed out in [1], for a small time
step 7 < O(h?), where h is the space mesh size, some standard iterative methods, like
the Richardson iteration can guarantee a good convergence for the discrete system. But
for a relative large time step 7, [1] recommended multigrid methods, see [4] for details.
Now we consider to use the cascadic multigrid. Similar to the second order elliptic
problem, it is proved that the cascadic multigrid with CG iteration as a smoother is
accurate with the optimal complexity in 3D and 2D, and nearly optimal in 1D. As for
other traditional iterative methods, like the Richardson iteration, the cascadic multigrid
still yields the optimal accuracy and complexity in 3D, 2D and in a certain case of 1D.
Notice that for the second order elliptic problem, the cascadic multigrid with these
iterative methods gives the optimal accuracy and computation complexity only in 3D
and nearly optimal in 2D. They cannot be used for 1D.
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2. Model Problem and Its Finite Elment Approximation

Consider the following parabolic problem: to find u(z,t) such that

%—I—Eu =f in Qx][0,T]

u(z,t) =0 in 0Q x[0,T], (2.1)
u(z,0) =up(x),

where Q C R? (d = 1,2,3) is a bounded domain, f € L?(Q). L is an elliptic operator
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Here a;j(x) satisfies
d
€6 < Y aij&it; < CE'E Vo e Q€ € RY, (2.3)
ij=1

where ¢,C' are positive constants.
The variational form of (2.1) is to find u € H}(Q), u(z,0) = ug(x) such that
ou

(E,v) + B(u,v) = (f,v) Vv € H}(Q), te][0,T], (2.4)

where the bilinear form B is

d Ou Ov 1
B(u,v) :/ Z ajj———dx Yu,v € H ()
Q ij—1 Bacj 81‘1

and

(f,v) :/vadx.

We refer the notations of Sobolev space to [5] for details. It is easily seen that the
bilinear form B(u,v) is

(1). bounded, i.e. |B(u,v)| < Clu1jv|y Vu,v € H(Q).

(2). elliptic, i.e. |B(u,u)| > Clulf Vu € H}(Q).

We use the backward Euler scheme and Crank-Nicolson scheme for the time dis-
cretization [8]. Both schemes are absolutely stable [6]. Let At, be the n'® time step
and M the number of steps, then M  At, = T. We lead to the following problem:
for a given function g,_1 € H (), find w € H}(Q) such that

Ar(w,v) = Tﬁl(w,v) + B(w,v) = (gn—1,v) Vv € H&(Q), (2.5)



