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Abstract
A general local C™(m > 0) tetrahedral interpolation scheme by polynomials of degree
4m + 1 plus low order rational functions from the given data is proposed. The scheme
can have either 4 + 1 order algebraic precision if C*™ data at vertices and C™ data

on faces are given or k + E[k/3] + 1 order algebraic precision if C* (k < 2m) data are
given at vertices. The resulted interpolant and its partial derivatives of up to order m are
polynomials on the boundaries of the tetrahedra.
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1. Introduction

We consider the problem of constructing C™ (m > 0) piecewise rational local interpolation to
the data on a domain in IR? that is assumed to have been tessellated into tetrahedra (we denote
the tessellation by 7). The scheme requires the following data: The partial derivatives of order

s at each vertex for s = 0,1,---,2m, partial derivatives of order s at s equally (no necessary)
distributed points (excluding the end points) on each edge, and % [(m+2s)(m+2s—1)—3s(s—1)]
regularly distributed points on each face for s = 0,---, m (see section 4 for detail).

Interpolation over tetrahedra is a fundamental problem in the areas of data fitting, CAGD
and finite element analysis. Many schemes have been developed for constructing C' inter-
polants. These schemes can be classified into three categories. The schemes in the first category
require the interpolants to be polynomials over the given tetrahedra. In (Rescorla, [2]) a C!
piecewise polynomial of degree 9 interpolation scheme is presented which needs C* data at the
vertices. In general, a C™ piecewise polynomial interpolation scheme requires a polynomial of
degree 8m + 1 and C*™ data (see [6]). It should be noted that this approach needs much higher
order of data and higher degree of the polynomial than the order of smoothness that the scheme
can achieve. To avoid such disadvantages, subdivision schemes, that may be classified into the
second category, are developed. In these schemes, each tetrahedron is split into sub-tetrahedra
using Clough-Tocher split (see Alfeld, [2], Worsey and Farin, [8] and Farin, [5]) or Powell-Sabin
split (see Worsey and Piper [9]). In (Alfeld, [2]), Clough-Tocher split is used to split each tetra-
hedron into twelve sub-tetrahedra, and C? data and quintic are used to achieve C' continuity.
An n-dimensional Clough-Tocher scheme is proposed by Worsey and Farin, [8]. In (Worsey and
Piper,[9]), each tetrahedron is split into twenty-four sub-tetrahedra, and C* data and quadratic
are used to achieve C' continuity. The main disadvantage of this approach is that it leads to
more sub-tetrahedra hence more pieces of functions. For examples, the Clough-Tocher split
may cause many thin sub-tetrahedra which may affect the stability of the interpolant. The
third category of the schemes use rational form interpolants. The rational interpolants avoid
the split of the tetrahedra. In (Alfeld, [1]), a transfinite C! scheme is proposed, and through the
discretization of the transfinite scheme a finite C! rational interpolant is derived. In (Barnhill
and Little, [4]), a C* BBG interpolant, which is then discretized to a 28-degrees-of-freedom
C! scheme. However, such a discretization is rather complicated. The most general simplicial
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rational interpolation scheme is the perpendicular interpolation described in [3]. The C™ inter-
polation scheme requires C" data at vertices, uses rational function with denominator degree
6m + 12 (for even m) or 6m + 6 (for odd m), and has order m or m + 1 algebraic precision.
To achieve the goal of using lower order polynomials, global spline interpolation methods have
been proposed by Wang and Shi (see [10]) for constructing C! interpolants in any dimension.

In this paper, we shall use the rational form to construct locally C™ interpolant for any
integer m > 0. For achieving global C™ continuity, we require C?™ data at the vertices and C™
data on the faces and use a polynomial of degree 4m + 1 plus a rational term with denominator
degree at most 3m. The polynomial part will interpolate up to n := E[m/2] order data, while
the rational part, which and its partial derivatives of up to order m are polynomials on the
boundary of the tetrahedra, will interpolate higher order data. We should mention that all the
parameters appeared in the interpolant in our scheme are linear. Hence the interpolants are
not only useful in the CAGD area, but also suitable for the finite element analysis. The fact of
the interpolant and its partial derivatives are polynomials do have some advantages. It makes
the construction of the interpolant as easy as polynomial. This feature is important in some
applications in which only boundary values (including derivatives) are involved. Comparing
with the perpendicular interpolation of [3], the advantages of our schemes are: the interpolants
use lower order rational functions, achieve higher order algebraic precisions and have polynomial
boundary feature. We should point out that although the algebraic precision is not crucial in
the area of scattered data interpolation, but it is important in the application of the finite
element analysis, since it relates to the convergence order. The disadvantage of our scheme is
that more data (face data and C?™ vertex data) are involved. However, we propose an approach
to obtain these data when only lower order data at vertex are given.

The paper is organized as follows: Section 2 gives the notations and the forms of the
rational interpolation functions. Sections 3 shows that the used rational functions are well
defined and have the required smoothness and have minimal degree properties. Section 4
establishes the formulas for computing the coefficients of the interpolants. In section 5, we
discuss the dimension of the interpolation function space, and in section 6 we consider the
algebraic precision that the interpolant can achieve.

2. Interpolation Forms
The interpolants in this paper are locally defined on tetrahedra as trivariate polynomials
plus trivariate rational functions. The polynomials used in this paper are in Bernstein-Bezier
(BB) forms over tetrahedra. Let p; = (z;,v:,2:)7 € IR® for i = 1,---,4. Then the tetra-
hedron, denoted by [pip2psps], with vertices p; is defined by [p1papsps] = {p € R?® : p =
Z?:l a;pi, 0 < a; <1, Z?:l a; = 1} where (ai,---,a4)? is known as barycentric coordi-
nate of p. On a tetrahedron, a trivariate polynomial of degree n is expressed by f(a) =
. 4
flon, - aa) = Yo aBRan, s a) with X = (A, 2,08, 0)7 € Z4, Al = X5

! . . .
and BY (a1, 1) = m@m;m@mf, where Z% is the collection of the four di-

mensional vectors with nonnegative integer components. As a subscript, A stands for A; Ao Az Ay
or )\1,)\2,)\3,)\4.

Now we consider the directional derivatives of f(«). If we use the symbolic shift oper-
ator Ej, i.e., Ejby = bxy; for j = 1,---,4, where e; = (6j1)f_, is the jth unit vector

n
in IR*, then f(a) can be expressed as f(a) = (2?21 oz,-Ei) bo. Let & = (&,-++,&4)T be
a directional vector in barycentric coordinate, that is, £ is the difference of the barycentric
coordinates of two points ¢; and ¢z in IR?(hence Z?:l & = 0), then directional derivative

n—1
D¢f(a) = n (Z?:l aiEi) (Z?:l fiEi) bo. It is not difficult to check that Dy, _4, F(p) =
D¢ f(a), where F(p) is the Cartesian coordinate form of f(a). More generally, let & =

( §j), e ij))T, j=1,2,....s(s < n) be any s directional vectors, then the s-th order di-

rectional derivative is

4 n—s 4
D21§2~~~Es'f(a) = (71%'8)' (Z aiEi> H (Z fl(J)Ez> bo. (2.1)

j=1 \i=1

This equality is used frequently to compute the coefficients of a BB form polynomial around
vertices, edges and faces of the given tetrahedron from its partial derivatives.



