AN ASYMPTOTICAL $O((k+1)n^3L)$ AFFINE SCALING ALGORITHM FOR THE $P_*(k)$ -MATRIX LINEAR COMPLEMENTRITY PROBLEM*

Zhe-ming Wang

(Department of Statistics and Operations Research, Fudan University, Shanghai 200433, China)

Zheng-hai Huang

(Institute of Applied Mathematics, Academy of Mathematics and Systems Sciences, Academy of Sciences, Beijing 100080, China)

Kun-ping Zhou

(Department of Statistics and Operations Research, Fudan University, Shanghai 200433, China)

Abstract

Based on the generalized Dikin-type direction proposed by Jansen et al in 1997, we give out in this paper a generalized Dikin-type affine scaling algorithm for solving the $P_*(\kappa)$ -matrix linear complementarity problem (LCP). Form using high-order correctors technique and rank-one updating, the iteration complexity and the total computational turn out asymptotically $O((\kappa+1)\sqrt{n}L)$ and $O((\kappa+1)n^3L)$ respectively.

Key words: linear complementarity problem, $P_*(\kappa)$ -matrix, affine scaling algorithm

1. Introduction

An LCP is normally for finding vectors $x, s \in \mathbb{R}^n$ such that:

$$s = Mx + q, \quad x^T s = 0, \quad (x, s) > 0.$$
 (1)

where $q \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$. An LCP is called monotonic if M is positive semi-definite. In this paper, M is assumed to be a $P_*(\kappa)$ -matrix^{[6][9]} i.e. for a $\kappa \geq 0$, M satisfies:

$$(1+4\kappa) \sum_{u_i(Mu)_i \ge 0} u_i(Mu)_i + \sum_{u_i(Mu)_i \le 0} u_i(Mu)_i \ge 0$$

for any $u \in \Re^n$. Obviously, positive semi-definite matrix is a $P_*(0)$ -matrix. It was proved in [10] that M is a $P_*(\kappa)$ -matrix iff M is a sufficient^[1].

Based on Dikin's approach, Monteiro and Adler proposed in [8] an affine scaling algorithm of primal-dual type for LP whose iteration complexity is $O(nL^2)$, and Jansen et al gave out lately in [3] a primal-dual algorithm whose iteration complexity is O(nL). Later, Jansen et al^[5] made an improvement on the complexity of the algorithm given in [3] such that the iteration complexity obtained is asymptotical $O(\sqrt{n}L)$, and the total computational complexity is asymptotical $O(n^{3.5}L)$. Recently, Jansen et al made an unified generalization in [4] of the primal-dual affine scaling directions and, starting from an arbitrary feasible pair (x^0, s^0) , produced a generalized Dikin-type affine scaling algorithm for the monotone LCP, of which the iteration complexity is $O(\frac{n}{\rho_c^2(1-\rho^2)}\log\frac{(x^0)^{\top}s^0}{\varepsilon})$.

In this paper, we consider the $P_*(\kappa)$ -matrix LCP. Based on the generalized Dikin-type direction given in [5], we give out an r-order generalized Dikin-type affine scaling algorithm by using the high-order correctors technique and the rank-one updating, where r is an integer in $[1, \sqrt{n}]$. The iteration complexity of our algorithm is $O((\kappa + 1)n^{(r+1)/(2r)}\log\frac{(x^0)^\top s^0}{\varepsilon})$, and the total computational complexity is $O((\kappa + 1)(n^{2.5} + rn^2)n^{(r+1)/(2r)}\log\frac{(x^0)^\top s^0}{\varepsilon})$. If $r = \lfloor \sqrt{n} \rfloor$ in

^{*} Received April 23, 1998.

particular, then the iteration complexity becomes asymptotically $O((\kappa+1)\sqrt{n}\log\frac{(x^0)^{\top}s^0}{\varepsilon})$, and the total computational complexity bound becomes asymptotically $O((\kappa+1)n^3\log\frac{(\kappa^0)^\top\kappa^0}{s})$.

2. An r-Order Algorithm

In this paper, the following notations are adopted: For $u, v \in \Re^n_+$, let $\min(u)$ and $\max(u)$ denote reapectively $\min_{1 \le i \le n} u_i$ and $\max_{1 \le i \le n} u_i$, and let uv and $u^h(h \in \Re)$ represent respentively vectors of \Re^n that $\overline{(uv)}_i = u_i v_i$ and $\overline{(u^h)}_i = (u_i)^h$.

Denote the set of strict feasible solution $\{(x,s)\in\Re^n\times\Re^n:s=Mx+q,(x,s)>0\}$ by \mathcal{F} , and let

$$\mathcal{N}_{\infty}(\beta) = \{ (x, s) \in \mathcal{F} : ||xs - \mu e||_{\infty} \le \beta \mu \}$$

where $\mu = x^T s/n$ and $\beta \in (0,1)$.

In this paper, we assume $\mathcal{F} \neq \emptyset$; thus, the system (1) is solvable^[6].

Our algorithm is as follows:

The algorithm is to be initiated from a given pair (x^0, s^0) that satisfies $(x^0, s^0) \in \mathcal{N}_{\infty}(\beta)$.

Step 0: Set k := 0.

Step 1: Set $(x,s) := (x^k, s^k)$. If $x^T s \le \varepsilon$ ($\varepsilon > 0$ is a pre-set tolerance error), stop.

Step 2: Let $\gamma \in (0,1)$, and choose $(\tilde{x},\tilde{s}) \in \Re^n_+ \times \Re^n_+$ such that

$$(\tilde{x}_i)^{-1}|x_i - \tilde{x}_i| \le \gamma \text{ and } (\tilde{s}_i)^{-1}|s_i - \tilde{s}_i| \le \gamma \text{ for } i = 1, 2, \dots, n.$$
 (2)

Step 3: Let w = xs and $\ell > 1$. compute $(d_x^{(1)}, d_s^{(1)})$ from

$$d_s^{(1)} = M d_x^{(1)}, \quad \tilde{s} d_x^{(1)} + \tilde{x} d_s^{(1)} = -\frac{w^{\ell+1}}{\|w^{\ell}\|}. \tag{3}$$

Step 4: For $j = 2, \dots, r$, compute $d_x^{(j)}, d_s^{(j)}$) from

$$d_s^{(j)} = M d_x^{(j)}, \quad \tilde{s} d_x^{(j)} + \tilde{x} d_s^{(j)} = -\sum_{t=1}^{j-1} d_x^{(t)} d_s^{(j-t)}. \tag{4}$$

Step 5: Choose a step length $\bar{\alpha} > 0$ such that the new $(x(\bar{\alpha}), s(\bar{\alpha}))$,

$$x(\bar{\alpha}) = x + (1 + \gamma) \sum_{i=1}^{r} \bar{\alpha}^{j} d_{x}^{(j)}, \quad s(\bar{\alpha}) = s + (1 + \gamma) \sum_{i=1}^{r} \bar{\alpha}^{j} d_{s}^{(j)},$$

is in $\mathcal{N}_{\infty}^{-}(\beta)$.

Step 6: Set $(x^{k+1}, s^{k+1}) := (x(\bar{\alpha}), s(\bar{\alpha})), k := k+1$ and go to Step 1. The quantity $-\frac{w^{\ell+1}}{\|w^{\ell}\|}$ given in the step 3 (which was first introduced by Jansen et al^[4]) is a generalized Dikin-type affine scaling; when $\ell = 0$, this quantity turns out a classical primal-dual affine scaling^[10]; when $\ell = 1$, it becomes a primal-dual Dikin affine scaling^{[3][5]}.

For the sake of notational simplicity, we omit in the following discussion the superscript kunless otherwise specified.

Let w = xs and $\tilde{w} = \tilde{x}\tilde{s}$. It is not difficult to obtain the following results by (2).

$$(1+\gamma)^{-2}w_i \le \tilde{w}_i \le (1-\gamma)^{-2}w_i; \tag{5}$$

$$(1 - \gamma)\tilde{x} < x < (1 + \gamma)\tilde{x}, \quad (1 - \gamma)\tilde{s} < s < (1 + \gamma)\tilde{s}; \tag{6}$$

$$0 < 1 - \gamma \le x_i(\tilde{x}_i)^{-1} \le 1 + \gamma, \quad 0 < 1 - \gamma \le s_i(\tilde{s}_i)^{-1} \le 1 + \gamma. \tag{7}$$

Let $x(\alpha) = x + (1+\gamma) \sum_{i=1}^r \alpha^j d_x^{(j)}, s(\alpha) = s + (1+\gamma) \sum_{i=1}^r \alpha^j d_s^{(j)},$ where α is a certain