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Abstract

In this paper, we construct the genuine-optimal circulant preconditioner for finite-
section Wiener-Hopf equations. The genuine-optimal circulant preconditioner is defined as
the minimizer of Hilbert-Schmidt norm over certain integral operators. We prove that the
difference between the genuine-optimal circulant preconditioner and the original integral
operator is the sum of a small norm operator and a finite rank operator. Thus, the pre-
conditioned conjugate gradient (PCG) method, when applied to solve the preconditioned
equations, converges superlinearly. Finally, we give an efficient algorithm for the solution
of Wiener-Hopf equation discretized by high order quadrature rules.
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1. Introduction

Wiener-Hopf equations are integral equations defined on the half-line:
ox(t) -I-/ a(t — s)z(s)ds = g(t), te€RH,
0

where o > 0, a(-) € L1(R) and g(-) € Ly(R"). Here R = (—o00,00) and Rt = [0,00). In

our discussions, we assume that a(-) is conjugate symmetric, i.e. a(—t) = a(t) . Wiener-
Hopf equations arise in a variety of practical applications in mathematics and engineering, for
instance, in the linear prediction problems for stationary stochastic processes [8, pp.145-146],
diffusion problems and scattering problems [8, pp.186-189]. In this paper, we consider using the
preconditioned conjugate gradient (PCG) method to solve finite-section Wiener-Hopf equations:

ox(t) + /OT a(t —s)z(s)ds = g(t), 0<t<T. (1)

Gohberg, Hanke and Koltracht [7] have introduced two circulant integral precondition-
ers, i.e., wrap-around and optimal circulant preconditioners to precondition the finite-section
Wiener-Hopf equations (1). Circulant integral operators are operators of the form

(@) = [ helt—sds, 0st<r,
0
where h, € Li[—T, 7] are T-periodic, i.e., h,(t — 7) = h,(t) for t € [0, 7]. Let
Arx(t) = / a(t — s)x(s)ds, 0<t<m, (2)
0

then the preconditioned equation is given by

(oI + H,) " (oI + Ap)a,(t) = (oI + H) Yg(t), 0<t<r. (3)

* Received June 18, 1998; Final revised January 15, 2001.
DSupported in part by the natural science foundation of China No. 19901017.



630 F.R. LIN

It has been proved in [7] that for sufficiently large 7, the spectra of the wrap-around and optimal
circulant preconditioned operators are clustered around one. Hence the PCG method converges
superlinearly for sufficiently large 7, see for instance [1].

In §2, we construct the genuine-optimal circulant integral preconditioner for the finite-section
Wiener-Hopf equation (1). The genuine-optimal circulant preconditioner is the minimizer of
the following Hilbert-Schmidt norm

I = (o1 + Hy) V(o1 + A,) (0T + Hy) 2|

over all circulant integral operator H, such that (¢ + H,) is positive definite. We prove
that the genuine-optimal circulant preconditioners have the property that the spectra of the
preconditioned operators (oI + H,)"'(oI + A;) are clustered around one for sufficiently large
T.

In this paper, we also consider the discretization of the preconditioned integral equations (3)
by high order quadrature rules. Let the interval [0, 7] be partitioned into N equal subintervals
of step-size t = 7/N. By Newton-Cotes quadrature rules, using s, = kt, £k = 0,1,---, N as
quadrature points, we get the preconditioned matrix systems

(o1, + Cpr)_l(UIp + ApDy)x, = (oI, + Cpr)_lgpa (4)

where p = N + 1 is the number of quadrature points (if the rectangular rule is used, then
the quadrature points are given by s = k¢, K = 0,1,---,N —1 and p = N). Here I, is the
p-by-p identity matrix, A, is the Hermitian Toeplitz matrix with the first column given by
(ta(0),ta(t),---,ta(Ne))? and the N x N principal submatrix of C,, is a circulant matrix with
the first column given by (th,(0), th.(2),- -+, th- (N —1)1))T. We recall that a matrix A, is said
to be a Toeplitz matrix if A, = [a; ;] satisfies a; ; = a;—; and a matrix C,, is a circulant matrix if

it is a Toeplitz matrix and c_; = ¢p—; fori =1,2,---,p—1. In (4), D, is a diagonal matrix that
depends only on the quadrature rule used. For instance, the diagonals of D, corresponding
to Simpson’s rule are given by (%, %, %, %,---,%, %,%,%). We note that if a(t) and g(t) are

smooth functions, then the accuracy of the discretized solutions \/ Eﬁio t(z(iv) — [xp)i)? of the

rectangular, trapezoidal and Simpson’s rule are of the order O(¢), O(:?) and O(1*) respectively,
see [11] for instance.

We will give an efficient method to find an approximation of (¢, + C,D,)~! in O(plogp)
operations. We note that if the rectangular rule is used, (4) is basically a circulant precon-
ditioned Toeplitz system which requires only O(plogp) operations in each iteration by means
of FFTs [13] and the convergence rate of these systems has been analyzed for instances in
[2, 9, 10, 14]. If high order quadrature rules are used, the discretization matrices of the cir-
culant preconditioners oI, + C,D, are in general not circulant and it is difficult to find the
inverse of (oI, + C,D,) ™" efficiently.

The outline of this paper is as follows. In §2, we construct the genuine-optimal circulant
preconditioners for (1) and prove that the spectra of the preconditioned operators are clustered
around one. Numerical results are given in §3 to illustrate the efficiency of circulant precondi-
tioners. In §4, we propose an efficient algorithm for solving (4) and give numerical results to
show the fast convergence and the stability of our algorithm.

2. Genuine-Optimal Circulant Integral Preconditioners

Let H; be a circulant preconditioner. We then solve the preconditioned equation
[(of + H,) Yo + Az (t) = (o + H,) g(t).
A natural idea is to find the circulant operator H, such that the Hilbert-Schmidt norm

W = 4,1P = [ [ (alts) = bt = 9){alto) = Frle = s




