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Abstract

In this paper, a family of 3-dimemsional elements different from isoparametric sevendipity is
developed according to the variational prineiple and the convergence criteria of the mixed stiffness finite
eloment method® 9 101, For the new family, which iz named mixed stiffness olements, the number of
nodes on the quadratic (resp. cubic) element is not 20 (resp. 32) but 14 (resp. 26) . Theoretical analysis
and various computational comparisons have found the mixed stiffness element superior over the
isoparametric serendipity element, especially a substantial improvement in eomputational efficiency can
be achieved by replacing the 20 node-isoparametric olement with the 14-node mixed stiffness elemsnt,

1. Introduction

For finite element analysis of a 8—dimensional continnum, an extengively used
guadratic element is the 20-node isoparametric element. The element with the gerendi-
pity family as shape functions is sophisticated and has many advantages, but its
practical use in large-scale problems always leads to very high requirement for
compuier memory capacity and to large amount of computational work.

The trouble is caused by excesive nodes over one olement. Hence a guestion:
Can another kind of distorted rectangular blook elements with less than 20 nodes and
the same accuracy be constructed? The history of the finite element method has
indicated that it seems impossible to find any such element in the domain of standard
£nite eloments. Recent advances of nonstandard finite element methods™~%5-% make
it possible to take another way and consequenily give an affirmative answer to the
question, By means of the mixed stiffness finite olement method™®1% a new family of
curved elements is developed in the paper. A progressively increasing number of
nodes and hence improved accuracy characterize each new member of the family.
With the exception of the linear element, the number of nodes on each element of
the new family is less than that of old serendipity family by six. For quadratic and
cubic elements, they are 14 and 26 respectively.

Despite of the frequent use of linear and cubic elements in engineering design
offices, we will focus our discussion, on account of the typicalness and practical
importance of the guadratic element, on the 14-node mixed stiffness element.
- Through theorstical analysis and computational comparison with the 20-node isopara-
metric element, we will see that the performance of the new elements is quite
satisfactory.

The paper is outlined as follows. In Sect. 2 the variational formulations of the
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mixed stiffness method are briefly introduced. Sect. 8 is devoted to description of the
essentials of direct formulation. In Sect. 4 three convergence criteria of the mixed
stiffness method are posed, and the approximation of the 14-node element examined.
Sect. 5 is concerned with computational comparisons. Sect. 6 is the conclusion.

9. Mixed Stiffness Finite Element Method

Let us consider the basic boundary problem of elasticity
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whore B (_51_)

—matrix of differential operator defining the strain-displacement

relations,
D= olagtic mairix,

T = vector of surface tractions and T (v) = B (cos(n, z)) DB( 0

)u, where
ox;
n is the surface normal,

I, =boundary of the domain £ over which tractions T, are prescribed,
I',=boundary of 2 over which displacements u, are prescribed, and
. Iy= aﬂ\r o3 Fi

f=distributed body force.
A variational formulation equivalent to the boundary-value problem can be

expressed as™ ¥
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= stationary,

where o =stresses,
u=displacements assumed to satisfy the prescribed boundary conditions,

{0} =a gubdivision of £ associated with the stresses,
{8} = — another subdivision of Q associated with the displacements, such that for

any pair (£, Q) of subdomains &(2;N(2,)\22; either is empty or runs
~ through the interior of £;,
I'yy=0(2,N Q) \84,,
Contrasting this with the Hellinger-Reissner Prineiple, which can be expressed as
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we see the following differences between the two variational principles:




