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Abstract

A general theory for nonlinear implicit one-step schemes for solving initial value problems for
ordinary differential equations is presented in this paper. The genoral expansion of “symmetric”
implicit one-step schemes having second-order is derived and stability and convergence are studied. As

examples, some geometric schemes are given.
Based on previous work of the first anthor on & generaligation of means, a fourth-order nonlinear

implicit one-step scheme (GMS)is presented for solving equations with steep gradients. Also, 2 hybrid
method basad on the GMS and a fourth-order linear scheme is discussed. Bome numerical results are

given.

1. Introduction

Many classical methods for solving initial value problems for ordinary differential
equations are based on piecewise polynomial inferpolation. If the solution of the
problem possesses a very steep gradient, these schemes produce poor results. In
particular, if a singularity ocours, it is often inappropriate to attempt to represent the
solution in the neighborhood of the singularity by a polynomial . In this paper, we
consider a class of nonlinear implicit one—step schemes that may be more appropriate
for such problems. | |

A goneral theory for nonlinear implicit one-step schemes ig developed in Section
3  Conditions for congistency, stability and convergence are obfained. Every
consistent symmetric scheme is at least second—order, and the condition for them to
be fourth-order is given. A clags of symmetric and homogeneous schemes which are
generalizations of the well-known trapezoidal rule is oblained. .

The trapezoidafl rule is exact for second—degree polynomials. In terms of geometry,
a second—degroe polynomial is a conie. As examples of nonlinear symmetric implicit
schemes, we develop several geometric schemed based upon ‘“circles”, “ellipses”,
‘“parabolae”, and “hyperbolae” in Section 3.

On the other hand, in terms of means, the trapezoidal rule is the arithmetic mean
of the first derivative of the solution at two neighboring grid points. In Section 4,
based on the generalization of meanst™, a fourth-order nonlinear implicit one—step
scheme(GMS)which isg shown to be efficient in numerical tests is presented for solving
problems with steep gradients.
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In Section b, we disouss some practical considerations including the use of hybrid
methods based upon the GMS and more traditional schemes. |

In thig paper, the theory of nonlinear implicit one—sbep schemes is restricted to
soalar equations. However, we have used these schemes sitccessfully to solve gystems of
equations. The application of these schemes to systems is discussed briefly in Section 6.

Numerical results for seven test problems, some of which contain gystems of
equations, are given in the lasgt section. T'wo of the examples use an imbedding tech-
nigue to apply the GMS to the solution of two—point boundary value problems.

2. A General Theory for Nonlinear Implicit One—step Schemes

Congider the initial value problem(I. V. P.)

y'=f(@, ¥), y(a)=y (a<az<b), (1)
where f(, %) is continuous in # and Lipschiz continuous in y in the region e<<a <o,
— oo < y< oo, ¢ and b finite. a

We investigate the following general nonlinear implicit one—step scheme

__ Yn+1=yn+ks(fn; fn+1), (2)
where b=y — Tn, fn =f (mn; Yn) ’ fn+1 =f (@ps1, Yn+1) .
The local truncation error for the scheme(2)is
L(f) =y (@) —y(@a) —BS(f(@n, Yy(@)), [ (Tus1, Y(@nr1))), (3)

where ¢(#) is the solution of (1), |
Definition 150, T'he scheme (2) i3 said to have order p 4f p is the largest integer
for which

L(f)=0(h?*1),

Defnition 9. Thsahond(? is i & 4d snsians wh i L V. 2. (D 5l
o(h).

We will use the notation f(¢)=f(¢, y(¢)) throughout this paper except where it
may be Gonfused. For sa<a<@y,y, lob t=(x—=z,)/h. Since

y(mn+1) hy(mn) =h 'E f(mn+th}dt;

(8) may be rewritten as

L() =b{[ fantih)di=8(f @, y@), f@ms, y@dD}. @

By the Integral Mean Value Theorem, there exists a point £ between @, and @4y
guch that | -

[(r@rmai=se, v
So L) — (€, y(@)) = 8(S (@, 9(@0)), F(@nss, 9(ames))).

Furthermore, if /() =%— exigts, then

[} Foutihydi=f o)+ [" 1/t th) (L—D)de



