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It is well known that for the computation of disconiinuous solutions of
hyperbolic partial differeniial equations, the use of conservative difference schemes
has partial theoretical justification. The theorem of Lax and Wendroff in [1] states
that for a conservative difference approximation of a conservative hyperbolic system
o/ , oF
ot = ox
the limit function is a weak solution of the original system of partial differential
equations, and hence satisfies the Rankine Hugoniot condition. Of-course the weak
solation obtained may not be the unique pnysically relevant solution, but under
normal circumstances it will be. Now, for real practical problems the partial
differential equations often have nonhomogeneous terms and the computational
regions usually require coordinate transformations for simplification. Therefore we
congider hyperbolic systems with coeflicients which depend only on the independable
variables and with nonhomogeneous terms we call such systems weakly
conservative. Computational experience over the years tells us that the use of weakly
conservative difference schemes derived from the weakly congervative hyperbolio
systems also yields in general the correct discontinuous solutions. The reagson will be
stated and proven in thig note.

First of all, let us observe that the Lax and Wendroff theorem holds also for
equations with nonhomogeneons terms. That is, for

=(), if the difference solution converges boundedly almost everywhere, then
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where U, F(z, t, U) and B(x, #, U) are vectors, its weak solution U sabisfies
H(%T--U - ZE -F—W-B)dmﬁﬁ—l—jW(a:, 0)s T (w, 0)de=0 (2)

for every test function W which has continuous first derivatives and which vanishes
outside some bounded region. Suppose (1) has difference approximation
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where 4 denoteg any difference operator. F'rom congistency we have

 @le, i Flo—kds, ), «, Vietids, Da@ln b VP, =, Fi=Fa & 7,
Clz, t, V(e—mdz, t), -, V{z+ndz, t) >0z, t, V, -, V)=B{a, ¢, V),
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bere k, I, m, n are constants. For a given mesh, also denoted by 4, a discrete
solution can be obtained with (8) and then ¥ .(z, ) in the entire computational
region can be defined by inlerpolation. With only slight modification of the proof of
the Lax and Wendroff theorem in [1], we obtain the following result: if as dz, 46—>0,

¥V .(«, t) converges boundedly almost everywhere to a function Uz, ¢), then U(x, t)
is a weak solution of (1).

Now consider the coordinate transformation defined by

§=¢(, 1), n=nlz, 1) (4)
. - i BUE, ) o, 1)
with J #=0, J-= =0
oz, t) ols, 1)
in the region under consideration. In the new variables (1) is
t N z I Bﬁg, 5

here n,, &, ns, &z are ﬂunsidered ag functions of § and #. It hag difference
approximation |

| . | L —
t;ﬁh’;.- 1§¢ ﬂf |??.-= d?‘} lf,g é. U=0. (6)

Both (B) and (6) are weakly conservative, but they can be written in forms (1) and
(3) respectively. Equation (5) can be written as

ol . aF

el +B =0, . (7)
where O=nU+n,F, F=£(UAEF,
B=B— (U — ()0 — (£2)eF — (1) o F3 (8)
and with . Ve=nV+nQ G=£V-+E£G.
(6) can be written as
if: 1 jg +C =0, (9)

where € includes terms ﬁ" V etc. Since (7) and (9) are of formg (1) and (3)

respectively, we have: if the difference solution ¥ of (9), or rather ¥ defined by
solution ¥ of (6), converges to U, then U is a weak golution of (7). On the & 7
plane, U is a weak solution of (7) if it satisfies -

”(%@ ’ %T? F—W-B )dEdn+ JW(E, 0)-U(¢, 0)df=0 (10)

for every test function W. Here we have assumed that ¢=0 is mapped onto =0 and
that £>>0 corresponds to n>0, otherwise the single integral in (10) would have a
minus sign in front. Let us simply call U which defines [/ which satisfies (10) a
weak solution of (B).

We discuss first weak solutions which are piecewise continuously differentiable
in regions separated by smooth curves. The smooth parts ot ths solutions of (1), 6),
and (7) are the same because the equations are equivalent. The discontinuify
‘eondition for (1) is




