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Abstract

In this paper, a mortar element version for rotated Q1 element is proposed. The optimal
error estimate is proven for the rotated Q1 mortar element method.
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1. Introduction

Many authors have made significant contributions to the so-called mortar element method
(see [4] [5] [7] [8] [10] [11], and references therein). The mortar element method is a nonconform-
ing domain decomposition method with non-overlapping subdomains. The meshes on different
subdomains need not align across subdomain interfaces, and the matching of discretizations
on adjacent subdomains is only enforced weakly. This offers the advantages of freely choosing
highly varying mesh sizes on different subdomains and is very promising to approximate the
problems with abruptly changing diffision coefficients or local anisotropies.

The rotated @1 element is an important nonconforming element. It was first proposed and
analysed in [12] for numerically solving the Stokes problem. The rotated Q1 element provides
the simplest example of discretely divergence-free nonconforming element on quadrilaterals.
Due to its simplicity, the rotated Q1 element is used to simulate the deformation of martensitic
crystals with microstructure in [9]. Independently, it also was derived within the framework
of mixed element method (see [2]). In [2] it was proven that Raviart-Thomas mixed rectangle
element method is equivalent to rotated Q1 nonconforming element method.

The purpose of this paper is to study the rotated Q1 mortar element method. A mortar
element version for rotated Q1 element is proposed. By constructing some relations between
rotated @1 mortar element and bilinear element, the optimal error estimate for rotated Q1
mortar element method is proven.

The remainder of this paper is organized as follows. In §2 we introduce model problem,
the rotated @1 mortar element method, and some notations. In §3 some technical Lemmas are
given. In §4 the optimal error estimate is shown. For convenience, the symbols <, >, and =
will be used in this paper, and 1 < y1, T2 > y=2, and x3 < y3 mean that 1 < Cyy1, T2 > c2y2,
and czrs < y3 < Csxs for some constants C1, ¢z, c3, and C3 that are independent of mesh
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parameters. For any subdomain D C , we use usual L? inner product (-,-)p, Sobolev space
H?*(D) with usual Sobolev norm || - ||g+(p) and seminorm |- |gsp). If D = €, we denote the
usual L? inner product by (-, ), the Sobolev norm by || - ||s and seminorm by | - |5, where s may
be fractional (for details see [1]).

2. Preliminaries

Consider the following model problem: find u € Hg(2) such that
a(u,v) = f(v), Yov € Hy(Q), (2.1)
where
a(u,v) = (Vu, o), f(v) = (f,v),

f € L?(Q), Q is a rectangular or L-shape bounded domain.
_ N _
Divide € into geometrically conforming rectangular substructures, i.e., & = |J Qp with
k=1

0, N Q; being empty set or a vertex or an edge for k # I. With each Q) we associate a quasi-
uniform triangulation 75 () made of elements that are rectangles whose edges are parallel to
z-axis or y-axis. The mesh parameter hy is the diameter of the largest element in 7 (Qy). Let
I'y; denote the open edge that is common to 2 and ;. Denote by I' the set of all interfaces
between the subdomains, i.e., I' = [J 09, \02. Each edge inherits two triangulations made of
segments that are edges of elements of the triangulations of Q and ; respectively. In this
way each ['y; is provided with two independent and different one dimensional meshes, which
are denoted by T;*(Ty;) and T}'(T'x;) respectively. Let €, , and Q5 be the sets of vertices of
the triangulation 7, (Q4) that are in Q; and 09 respectively.
For each triangulation 75 (), the rotated Q1 element space is defined by

Xn(Q) ={ve L* () | vlp = ap+dha +apy + ap(e® —y°),
ak € R, vlaads =0, VYE € Tr(Q);

OENOQ
for Ey,E5 € E(Qk): if 0B NJE, = e, then

/v|3E1ds: /'U|3E2d8},

with norm and seminorm

ol =C Y @) Plaeo =0 Y o)
BETh (%) BETh ()

Introduce the global discrete space
N
Xn(@) = [T Xn(),
k=1

N N
with norm [ = (3 el ,)/* and seminorm ol = (3 ol )



