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Abstract

In this paper we present high-order I-stable centered difference schemes for the numer-
ical simulation of viscous compressible flows. Here I-stability refers to time discretizations
whose linear stability regions contain part of the imaginary axis. This class of schemes
has a numerical stability independent of the cell-Reynolds number Rec, thus allows one to
simulate high Reynolds number flows with relatively larger Rc, or coarser grids for a fixed
Rc. On the other hand, Rc cannot be arbitrarily large if one tries to obtain adequate
numerical resolution of the viscous behavior. We investigate the behavior of high-order
I-stable schemes for Burgers’ equation and the compressible Navier-Stokes equations. We
demonstrate that, for the second order scheme, Rc < 3 is an appropriate constraint for nu-
merical resolution of the viscous profile, while for the fourth-order schemes the constraint
can be relaxed to Rc < 6. Our study indicates that the fourth order scheme is preferable:
better accuracy, higher resolution, and larger cell-Reynolds numbers.

Key words: I-stable, Viscous compressible flow, Burgers’ equation, Cell-Reynolds number
constraint.

1. Introduction

Compressible flows with high Reynolds numbers, or, more generally, systems of conservation
laws with small viscosities, remain a challenging numerical problem, even with great progress
in the development of modern shock capturing methods for inviscid flows (the Euler equa-
tions) or systems of conservation laws in the last two decades. On the one hand, due to the
constraint on the computing capacity, one attempts to simulate high Reynolds number flow
with relative coarse grids (larger cell-Reynolds numbers), but on the other hand, when the
cell-Reynolds number becomes too large, one loses appropriate resolution on the viscous effect
and the numerical solutions become unphysical.

Due to the great success of modern shock capturing methods for hyperbolic systems, a very
natural idea for the simulation of the viscous flows seems to be the application of a shock
capturing method for the convection terms, coupled with some centered differences for the
viscosity term. By building a numerical viscosity into the scheme which reduces the accuracy
to first order across the discontinuities in order to suppress the numerical oscillations, shock
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capturing schemes are very effective in simulating inviscid flows and hyperbolic systems of
conservation laws [13]. Since the main idea of shock-capturing is underresolution across the
discontinuity, when simulating a slightly viscous flows where viscous effect is important, the
mixture of numerical viscosities with the physical ones become a subtle issue.

In this paper, we seek an alternative approach by using simply high order centered difference
schemes. This approach allows zero numerical viscosity, thus guarantees that, under enough
resolution, the viscous effect observed numerically is purely physical. However, the traditional
second order centered difference schemes for slightly viscous convection equations has a cell-
Reynolds number constraint Rc < 2. To break this stability barrier, we take the method of line
approach and use the so-called I-stable time discretization, which yields a numerical stability
independent of Re.

We call that a time-discretization for an ordinary differential equation is I-stable if the linear
stability region contains part of the imaginary axis. In [19] Vichnevetsky studied the stability
charts in the numerical approximation of partial differential equations. He first found that the
linear stability regions of some time-discretization schemes contain part of the imaginary axis
and applied these schemes to linear hyperbolic and advection-diffusion equations. In [3, 4], E
and Liu realized that to solve the incompressible Navier-Stokes equations, using the fourth-order
Runge-Kutta method (which is I-stable according to the above definition) along with a fourth-
order centered difference for the convection removes the cell-Reynolds number constraint, thus
allows them to simulate incompressible flows with very high Reynolds numbers. Choi and Liu [2]
introduced a class of three-stage, second order Runge-Kutta method (which is I-stable) for the
compressible Euler equations, and observed good convergence property toward the steady-state
solution. This is the scheme we will explore here.

While the I-stable scheme has a remarkable stability property, which allows one to use
an arbitrarily large cell-Reynolds number, in practice, this can never be done if one wants to
resolve the viscous effect. Failing to resolve adequately the viscous effect will simply produce
the results for the inviscid equations, rather than the viscous equations. The rule of the game
is to use relatively larger cell-Reynolds number (if stability allows) but still resolve the viscous
effect without numerical oscillations. It is the goal of this paper to investigate the suitable cell-
Reynolds number constraint for viscous conservation laws using high-order I-stable centered
differences. We use the Burgers’ equation and the compressible Navier-Stokes equations as
examples to study this issue.

We observe that, when using a second-order I-stable centered difference scheme, Re < 3 is an
appropriate constraint, while for the forth-order I-stable schemes this can be relaxed to Re < 6.
Within this range of Re the numerical schemes are stable and are essentially non-oscillatory.
This significantly improves the traditional cell-Reynolds number constraint Re < 2, and sheds
light on a promising direction to develop numerical schemes for compressible flows with high
Reynolds numbers.

This paper is organized as follows: In the next section, we introduce the high-order I-stable
centered difference for viscous conservation laws. In section 3, using the Burgers’ equation
as an example, we investigate the effect of the cell-Reynolds number for different time and
spatial discretizations. In section 4, we propose the fourth-order I-stable scheme for the 2-D
compressible Navier-Stokes equations. We study numerically the effect of cell-Reynolds number
using flows in a driven cavity and a Buoying-driven cavity. We end in section 5 with some
discussions.

2. For systems of conservation laws with small viscosity

Consider the scalar conservation laws with viscosity:

Oru + 0, f (u) = v0yau . (2.1)



