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Abstract

We consider a singularly perturbed semilinear convection-diffusion problem with a
boundary layer of attractive turning-point type. It is shown that its solution can be
decomposed into a regular solution component and a layer component. This decomposi-
tion is used to analyse the convergence of an upwinded finite difference scheme on Shishkin
meshes.
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1. Introduction

We consider the singularly perturbed semilinear convection-diffusion problem
Tu(z) := —eu"(z) — 2Pa(x)u’(z) + 2Pb(z,u(z)) =0 for x € (0,1), (1a)
u(0) =0, u(l) =, (1b)
where 0 < ¢ < 1 is a small constant, p > 0, a(z) > a > 0, b, > 0 for z € [0,1], a € C*[0,1]
and b € C*([0,1] x IR). Its solution u typically has a boundary layer of width O(e!/(P+!) In¢)
at z = 0. Numerical schemes for the case when p = 0 have been extensively studied in the

literature; see [6] for a survey.
The class of problems considered includes

—eu" —zu' +zu=0, for z € (0,1), u(0) =10, u(l)=m,

which models heat flow and mass transport near oceanic rises [1]. Multiple boundary turning
points (p > 1) are also covered by (1) and they too arise in applications [7].

We are aware of four publications that analyse numerical methods for (1) with p = 1.
Liseikin [2] constructs a special transformation and solves the transformed problem on a uni-
form mesh. The method obtained is proven to be first-order uniformly convergent in the
discrete maximum norm. Vulanovi¢ [8] studies an upwind-difference scheme on a layer-adapted
Bakhvalov-type mesh and proves convergence in a discrete 1 norm. This result is generalized
in [9] for quasilinear problems. In [3] the authors establish almost first-order convergence in
the discrete £, norm for an upwind difference scheme on a Shishkin mesh. There are also a
number of papers that consider problems of the type

—eu"(z) — 2Pa(z)u’ (z) + e(z,u(z)) =0 in (0,1)

with Dirichlet boundary conditions and ¢,(0,u(0)) > v > 0. In this case, however, the be-
haviour is dominated by the relation between the diffusion term and the reaction term. The
layer structure is like that of reaction-diffusion problems and is different from the layer occur-
ring in (1). We are not aware of any publication that considers numerical methods for (1) with
general p > 0.
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The main purpose of the present paper is to derive a decomposition of the solution of (1) into
a regular solution component and a boundary layer component, with sharp estimates for their
derivatives up to the third order (Section 2). In Section 3 we shall show how this decomposition
can be used to analyse the convergence of an upwinded difference scheme for the approximate
solution of (1). We prove that the scheme on a Shishkin mesh is almost first-order convergent
in the discrete maximum norm, no matter how small the perturbation parameter £ may be.
This error analysis is based on a hybrid stability inequality derived in [3] which implies that
the error in the /., norm is bounded by a specially weighted ¢; norm of the truncation error.

Notation. By C we denote throughout the paper a generic positive constant that is inde-
pendent of ¢ and of NV, the number of mesh nodes used.

2. Solution Decomposition

Theorem 1. Let a € C'[0,1] and b € C'([0,1] x IR). Then (1) has a unique solution u €
C3[0,1] and this solution can be decomposed as u = v+w, where the regular solution component
v satisfies

Tv=0, |V (@)|+[v"(x)] <C and e[v"(z)] < Ca? for z € (0,1),
while the boundary layer component w satisfies

Tw:= —ew" — zPaw’ + zPb(z,w) =0, b(z,w) = b(z,v + w) — b(z,v)

and
xPJrl

(4) < —i e i =0.1.2 1
|w (:U)|_Cu exp( 6(p+1)> for 1=0,1,2,3, z€(0,1)

with p = e'/(P+1)

Proof. The decomposition is constructed as follows. We define v and w to be the solution
of the boundary-value problems

Tv=0 for z€(0,1), a(0)v'(0) =5b(0,v(0)), v(l) = (2a)

and

Tw=0 for z € (0,1), w(0) = —v(0), w(l) =0. (2b)

The bounds for v and w and their derivatives will be given in Sections 2.2 and 2.3.

2.1. Preliminaries
Let

Aw) =1 /0 " Pa(s)ds

9

and choose a* to satisfy a(x) > o* > 0. For our analysis we need bounds for a number of
integral expressions involving A. First of all we have

* e+l * optl _ ptl
—A(x)g—%;”ﬂ and A(s)—A(x)g%% for 0<s<az<l. (3)
From this, for arbitrary ¢ > 0 we get
a* [ a* [ a* sPtl — pptl
@[ s+ exp(A(s) — A d<—/ P @5 T Vgs<1. 4
SA 070 exp(A(s) - Al))ds < % [ ey (ST < (4)

We shall also use

1 1 1 /p +1
||a||oosp+ ) / < llal|oot? )
exp(—A(s))ds >/ ex (—7 ds = exp | ————— | dt
/0 p(=A(s))ds 2 0 P (p+1e a 0 P (p+1)

1 1
waﬁ>
> exp | ———— | dt = Cp.
> p( p+D 8
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