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Abstract

Superconvergence of the mixed finite element methods for 2-d Maxwell equations is
studied in this paper. Two order of superconvergent factor can be obtained for the k-th
Nedelec elements on the rectangular meshes.
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1. Introduction

Superconvergence of the mixed finite element methods for 3-d Maxwell equations was first
considered by Monk [8]. In 1999, Lin and Yan [4] used the integral identity technique to study
this problem once more and improved Monk’s result. One order of superconvergent factor was
obtained by them for k-th Nedelec elements on the cubic meshes. The similar result was proved
for 2-d Maxwell equations by Lin and Yan [5] and Brandts [1]. In this paper, we improve the
Brandts’ result. If the domain is rectangular, two order of superconvergent factor which is one
order higher than Brandts’ result can be obtained for the k-th (k > 1) Nedelec elements on the
rectangular meshes.

The paper is organized as follows: In section 2, the mixed finite element formulation for
solving 2-d Maxwell equations is introduced. In section 3, we will consider the k-th (k > 1)
Nedelec elements on the rectangular meshes and prove some basic estimates. In section 4, the
mixed elliptic projection operator is defined and the error between the interpolation operator
and the projection operator is estimated by utilizing the method introduced in [1]. In section
5, we obtain the superclose result. In the last section, the global superconvergence is obtained
by the postprocessing.

2. Formulation

Consider the following two-dimension Maxwell equations

E; —rotH = -J in Q x(0,7), (1)

Hi+curlE =0 in Q x (0,7, (2)

nxE=0 on 90 x (0,7, (3)

E(O) = E07 H(O) = H07 (4)

where E = (Ey, E»), rotH = (%, —%), curlE = 8£2 — 851 ,nXE = Eyny—Einy, n = (ny,ns)

is the unit outward norm of 9Q, Q@ C R? is a bounded domain. In the following, we will use
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the notations

110, Il llo,e for L*(Q), L*(e)—norm,

and
1l | |lk,e for H*(Q), H*(e)—norm.
Let
Hy (curl; Q) = {v = (v1,12) € (L*())*; curlv € L*(2),n x v |so= 0},
with norm

IVlla(eurio) = {IIVII5.0 + lleurlvil§ o} /2.

The variational formulation based on (1)-(4) reads as: find (E, H) € Hy(curl; ) x L?(Q) such
that

(E¢, ®) — (H,curl®) = —(J, ®) V® € Hp(curl; ), (5)
(Hy, %) + (curlE,¢) =0 Yip € L*(Q), (6)
E(0) =Eo, H(0) = Hy. (7)

Let T}, be a regular partition of Q and Vj, x W C Hp(curl; Q) x L2(2) be the finite element
space. Then the finite element approximation based on (5)-(7) reads as follows ( [7] ): find
(Ep, Hp) € Vi, x W}, such that

((Ep)e, @) — (Hp, curl®) = —(J, ®) VP € Vy, (8)
((Hp)t, ) + (curlEp, ) =0 Vi) € Wy, 9)
En(0) = RyEo, H(0) = RyHo, (10)

where Ry, is the mixed elliptic projection which is given by (22)-(25). Since (8)-(10) is an
ordinary differential equations with respect to time ¢, there exists a unique solution. In this
paper, we will consider the k-th (k > 1) Nedelec finite element spaces [9].

3. Nedelec Finite Element Spaces

Let 2 be a polygon with boundaries parallel to the axes. T}, = {e} is a rectangulation of (2,
where

€= [xe —he,ze + he] X [ye —ke,ye + ke]
and h = max.{he, k.}. Tj is called regular if
Coh2 < meas(e) < Clh2 Ve € Tp,.

The Nedelec finite element spaces come from Raviart-Thomas finite element spaces [10]. We
first list some properties on these two finite element spaces.
Raviart-Thomas finite element spaces (V1) x W), is defined by

(Vl)h = {V = (Ul,’l}g) € Hg(diV;Q);V |eE Qk.H,k(e) X Qk7k+1(6),6 € Th}, (11)
W, = {we L*(Q);w le€ Qr(e),e € T}, (12)
where
Hy(div; Q) = {v € L*(Q)%; divy = % + 88—1;2 € L*(Q),v-n |po= 0}
with norm

IVllraivie) = {lIvllo.q + [Idivl3 o }'/%,



