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Abstract

In this paper, we will present some recent results on developing numerical methods
for solving Maxwell’s equations in inhomogeneous media with material interfaces. First,
we will present a second order upwinding embedded boundary method - a Cartesian grid
based finite difference method with special upwinding treatment near the material inter-
faces. Second, we will present a high order discontinuous spectral element with Dubinar
orthogonal polynomials on triangles. Numerical results on electromagnetic scattering and
photonic waveguide will be included.
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1. Introduction

Time domain solutions of Maxwell’s equations have found applications in engineering prob-
lems such as designs of VLSI chips and photonic devices [1]. In contrast to frequency domain
approaches where time harmonic Maxwell’s equations are solved for given frequencies [2], the
solutions from time domain simulation can produce a wide range of frequency information as
well as transient phenomena required in many applications.

The most used time domain algorithm for Maxwell’s equations is the simple Yee’s finite
difference scheme [3], which yields a second order approximation to the fields provided the
underlying grids are rectangles and the conductor or dielectric boundaries are aligning with the
mesh coordinates. Thus, the major disadvantage of the Yee’s scheme is the limitation of the
boundary or material interface geometry. To have second order accuracy, the scheme demands
a locally conforming mesh to the boundary, as a result, tiny finite difference cells may limit the
time step of the overall scheme.

Meanwhile, discontinuous Galerkin methods have attracted much research to handle the
material interfaces in the media. Being higher order versions of traditional finite volume method
[4], discontinuous Galerkin methods have been developed initially in 1970’s for the study of
neutron transport equations [5], and have now been applied to the area of computational fluid
dynamics and the solution of Maxwell’s equations [6] [7]. Discontinuous Galerkin methods
inherit the flexibility of the finite element method in allowing unstructured meshes, and at the
same time, employ high order polynomials for better accuracy and phase error in modelling
wave propagations.

In this paper, we will first present a new upwinding embedded boundary method which
employs a simple Cartesian grid to solve time dependent Maxwell’s equations. The proposed
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embedded boundary method, like the immersed interface method (IIM) proposed to solve elliptic
PDEs with discontinuous coefficients [8], uses a central difference scheme for mesh points away
from the interfaces while modifications are made for grid points near the interfaces. Second, we
will study a high order discontinuous spectral element with Dubinar orthogonal polynomials on
triangles and Legendre orthogonal polynomials on quadrilaterals.

Numerical Results on electromagnetic scattering will be given for the upwinding embedded
boundary methods while photonic waveguide with whispering gallery modes in microcylinders
will be simulated with the discontinuous spectral element methods.

2. Upwinding Embedded Boundary Method

2.1. One Dimensional Scalar Model Equation

We will consider the following simple linear wave equation to demonstrate the basic idea of
the upwinding embedded boundary method,

∂u

∂t
+ a

∂u

∂x
= 0, 0 ≤ x ≤ 1, (2.1)

where the wave speed a is assumed to be positive and discontinuous at xd ∈ (0, 1), and the
solution u(x, t) satisfies a jump condition at xd,

r+u(x+
d , .) − r−u(x−d , .) = g. (2.2)
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Figure 1: 1-D mesh with discontinuity at xd

For a uniform grid {xi = i∆x, 0 ≤ i ≤ N, ∆x = 1
N }, we have the numerical solutions un

i at
grid points (xi, t

n), i = 0, 1, · · · , N , and also the solutions at both sides of the jump location
xd denoted as un−, un

+ (see Figure 1). Let us assume that xd ∈ [xj , xj+1],and xd = xj + α∆x,
xj+1 − xd = β∆x, where α+ β = 1.

We will construct a uniformly second order finite difference method to solve (2.1) based on
the Lax-Wendroff approach

un+1 .= un + ∆tun
t +

(∆t)2

2
un

tt = un − a∆tun
x +

(a∆t)2

2
un

xx, (2.3)

where ∆t = CFL∆x
|a| , and the spatial derivatives can be approximated by appropriate finite

differences Let us assume that the solutions un
i , 0 ≤ i ≤ N, un

− and un
+ have been obtained for

the time step t = tn. We will show how to obtain the solutions at the time step t = tn+1.

• Solutions at the jump xd


