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Abstract

We investigate the problem of computing electromagnetic guided waves in a closed,
inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem
is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form
associated with the eigenvalue problem, we provide a new convergence analysis for the
finite element approximations. Numerical results are reported to illustrate the performance
of the method.
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1. Introduction

We consider in this paper a closed waveguide defined by a right cylinder with cross section
Ω, a bounded, Lipschitz, simply connected polyhedral domain in R2. The waveguide is filled
with inhomogeneous media whose electromagnetic properties are described by the real-valued
functions ε and µ. We assume the magnetic permeability µ = µ0, the magnetic permeability in
vacuum, and the dielectric permittivity ε is piecewise constant and has no variation along the
waveguide. More precisely, let Ω1 ⊂ Ω be an open domain, Ω2 = Ω\Ω̄1. We assume

ε(x) =

{
ε1ε0 in Ω1,

ε2ε0 in Ω2,

where ε0 is the dielectric permittivity in vacuum.
The waveguide problem is to find solutions to Maxwell equations which are of the general

form {
E(x, x3, t) = (E(x), E3(x))ei(ωt−βx3)

H(x, x3, t) = (H(x), H3(x))ei(ωt−βx3)
(1.1)

where x ∈ Ω and the x3-axis is along the waveguide, ω > 0 is the angular frequency of the guided
wave, β is the constant of propagation, E and H are electric and magnetic field components in
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the plane of the cross section, and E3 and H3 are electric and magnetic components along the
waveguide.

With ansatz (1.1), the second order three dimensional Maxwell equations expressed in terms
of electric field (E, E3) reduce to the following two-dimensional equations (cf. e.g. [11]):

∇× (∇× E) − iβ∇E3 − (ω2ε0µ0)εE = −β2E in Ω, (1.2)
∇ · (εE) − iβεE3 = 0 in Ω. (1.3)

For simplicity, perfect electric conductor boundary conditions are imposed

E× n = 0, E3 = 0 on ∂Ω, (1.4)

where n is the unit outer normal to ∂Ω.
Advances in various branches of photonics technologies have established the need for the de-

velopment of numerical and approximate methods for the analysis of a wide range of waveguide
structures that are not amenable to exact analytical studies [5]. The problem (1.2)-(1.3) is an
eigenvalue problem. Either ω or β is assumed to be known, and the goal is to find all possible
pairs which consist of the other missing constant β or ω and the corresponding field (E, E3).
The case with a given real-valued β has been extensively studied in the literature (see e.g. [8],
[2] and the references therein). More physically relevant case with a given ω to find unknown
β is recently studied in [11], in which the eigenvalue problem is studied under the assumption
that the frequency ω does not belong to the spectrum of the variational eigenvalue problems
associated with the curl-curl and div-grad operators. We remark that since the spectrum of
these two operators are generally unknown, this assumption on ω cannot be verified in practical
applications.

In this paper we are going to provide a new convergence analysis for the eigenvalue problem
(1.2)-(1.3) which removes the restrictions on the frequency ω in [11]. This is achieved by
modifying the sesquilinear form associated with the variational formulation of (1.2)-(1.3). The
key technical difficulty is the proof of the inf-sup condition of the modified sesquilinear form
which allows us to use the general framework for the approximation of the eigenvalue problems
developed in [1]. We introduce a finite element method which uses the lowest order Nedelec
edge element and standard conforming linear finite element to approximate (E, E3), respectively.
This choice of finite elements is shown in [11] to exclude spurious modes. Here again the discrete
inf-sup condition is proved without any restrictions on the frequency ω and the mesh sizes. We
also report several numerical experiments to illustrate the performance of the method studied
in this paper.

2. The Continuous Problem

We begin with introducing the Hilbert space X = H0(curl; Ω) ×H1
0 (Ω) which is equipped

with the norm

‖(V, q)‖X = ‖V ‖curl,Ω + ‖ q ‖H1(Ω) ∀(V, q) ∈ X.

Here ‖V ‖curl,Ω = (‖∇×V ‖2
L2(Ω) + ‖V ‖2

L2(Ω))
1/2 is the norm of the space H(curl; Ω) which is

defined as the collection of all functions V in L2(Ω) such that ‖V ‖curl,Ω <∞. H0(curl; Ω) con-
sists of functions V in H(curl; Ω) whose tangential component V×n vanishes on the boundary
∂Ω.

Set Enew
3 = −iβE3 in (1.3). To save the notation, E3 will represent Enew

3 for the reminder
of this paper. Let k2

0 = ω2ε0µ0. For Λ > 0, by adding ΛE on both sides of (1.2), we can
reformulate (1.2)-(1.3) with boundary condition (1.4) into the following variational form:


