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Abstract

We propose a simple numerical method for calculating both unsteady and steady state
solution of hyperbolic system with geometrical source terms having concentrations. Phys-
ical problems under consideration include the shallow water equations with topography,
and the quasi one-dimensional nozzle flows. We use the interface value, rather than the
cell-averages, for the source terms, which results in a well-balanced scheme that can cap-
ture the steady state solution with a remarkable accuracy. This method approximates
the source terms via the numerical fluxes produced by an (approximate) Riemann solver
for the homogeneous hyperbolic systems with slight additional computation complexity
using Newton’s iterations and numerical integrations. This method solves well the sub-
or super-critical flows, and with a transonic fix, also handles well the transonic flows over
the concentration. Numerical examples provide strong evidence on the effectiveness of this
new method for both unsteady and steady state calculations.
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1. Introduction

Hyperbolic systems with geometric source terms arise in many physical applications, includ-
ing the shallow water equations with bottom topography and the quasi one-dimensional nozzle
flow equations with variable cross-sectional area. When the source terms in the system have
concentrations, corresponding to a δ function in the source, the usual numerical method for
source term approximation may give poor approximations to the steady state equations due
to the first order numerical viscosity used at discontinuities [12]. A well accepted strategy for
such problems is to design so called well-balanced scheme that balances the numerical flux with
the source term such that the steady state solution is captured numerical with exactly or with
at least a second order accuracy. Many well-balanced schemes have been proposed by many
authors in recent years, including well-balanced scheme based on non-conservative product [12]
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and its extensions [13], [11], [5], [6], [9], [10], LeVeque’s quasi-steady scheme [18], kinetic schemes
[4], [19], [2], [25], relaxation schemes [20], central schemes [15]. Nonlinear extension of Roe’s
linear idea [23] was made in [3], [24], [14]. Most of these methods require the modification of
the numerical flux.

The interface method of Jin [14] uses the numerical flux for the homogeneous hyperbolic
systems in the source term, and was shown in [14] that for smooth solutions, it captures the
steady state at cell interfaces with a second order accuracy, thus is well-balanced. Designed for
Godunov [8] and Roe [22] type schemes, this method has the advantage that it does not require
any modification of the numerical flux for the convection term. By using the numerical flux
directly in the source term it needs almost no additional computation complexity to deal with
source term.

In this paper we derive a new set of well-balanced scheme that can be viewed as an improve-
ment of Jin’s interface method. It is a hybridization of the conventional cell average method
with a improved interface type method at concentration points. The main idea is based on
finite volume approximation of hyperbolic systems, with a more accurate approximation of the
volume average of the source term. While Jin’s interface method can be viewed as the trape-
zoidal approximation of this source average, we found that more accurate approximation of
the source average significantly improves the approximation of the steady state solutions. This
involves more accurate numerical integrations and Newton’s iterations, but the added computa-
tional compexity, compared to the interface method, is small. This new method can accurately
capture both unsteady and steady state solutions. Moreover, with a simply fix, it is capable of
handling the transonic flows at source concentrations.

In section 2, 3 and 4 we introduce our method for the shallow water equations, isothermal
and non-isothermal nozzle flow equations respectively. The property of preservation of steady
state equations is shown. Numerical examples show that the new method gives satisfactory
unsteady and steady state solutions.

In the sequel we will use xj+1/2 to denote the grid point, ∆x = xj+1/2−xj−1/2 the mesh size,
wj+1/2 = w(xj+1/2) the interface value of a general quantity w, and wj = 1

∆x

∫ xj+1/2

xj−1/2
w(x) dx

be the cell average of w over the cell [xj−1/2, xj+1/2].

2. The Shallow Water Equations

Consider the one-dimensional shallow water equations with topography

ht + (hv)x = 0, (2.1)

(hv)t + (hv2 +
1
2
gh2)x = −ghBx , (2.2)

where h is the depth of the water, u is the mean velocity, g is the gravitational constant, and
B(x) is the bottom topograph. The steady state solutions satisfy

hv = C1, (2.3)
1
2
v2 + gh + gB = C2. (2.4)

These steady state conditions are satisfied not only on smooth part of the solution, but also
across a bottom discontinuity [1]. A numerical method is called well-balanced [12] if it satisfies
the steady state conditions (2.3), (2.4) exactly or with at least second order accuracy even when
the bottom contains discontinuities. In this section we design a well-balanced scheme for (2.1),
(2.2) which can preserve these steady states even at cells containing discontinuity of B(x).

2.1. A hybrid method


