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Abstract

In [12], a QP free feasible method was proposed for the minimization of a smooth func-
tion subject to smooth inequality constraints. This method is based on the solutions of
linear systems of equations, the reformulation of the KKT optimality conditions by using
the Fischer-Burmeister NCP function. This method ensures the feasibility of all iterations.
In this paper, we modify the method in [12] slightly to obtain the local convergence under
some weaker conditions. In particular, this method is implementable and globally con-
vergent without assuming the linear independence of the gradients of active constrained
functions and the uniformly positive definiteness of the submatrix obtained by the Newton
or Quasi Newton methods. We also prove that the method has superlinear convergence
rate under some mild conditions. Some preliminary numerical results indicate that this
new QP free feasible method is quite promising.
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1. Introduction

Consider the constrained nonlinear optimization Problem (NLP):
min f(z), = € R", s.t.G(x) <0,

where f : R® = R and G(z) = (91(2), g2(2), - , gm(x))T : R* — R™ are Lipchitz continuously
differentiable functions.

We denote by D = {x € R"|G(z) < 0} and D = cl(D) the strictly feasible set and the
feasible set of Problem (NLP), respectively.

The Lagrangian function associated with Problem (NLP) is the function

L(z,\) = f(z) + \TG(x), (1)

where A = (A1, X2, -+, An)? € R™ is the multiplier vector. For simplicity, we use (z,)) to
denote the column vector (z%, A\T)T.

A Karush-Kuhn-Tucker (KKT) point (Z,X) € R™ x R™ is a point that satisfies the nec-
essary optimality conditions for Problem (NLP):

where 1 <i < m. We also say 7 is a KKT point if there exists a A such that (z,\) satisfy (2).
Finding KKT points for Problem (NLP) can be equivalently reformulated as solving the
mixed nonlinear complementarity problem (NCP) in (2), Problem (NCP) has attracted much
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attention due to its various applications, see [4, 1]. One method to solve the nonlinear comple-
mentarity problem is to construct a Newton method for solving a system of nonlinear equations
(see [11, 5]). Qi and Qi [12] proposed a new QP-free method which ensures the strict feasibility
of all iterates. Their work is based on the Fischer-Burmeister NCP function. They proved the
global convergence without isolatedness of the accumulation point and the strict complemen-
tarity condition. They also proved the superlinear convergence under mild conditions.

However, for the global convergence, [12] still used some stronger conditions. One is the
linear independence of the gradients of active constrained functions at the solution; another
is the uniformly positive definiteness of H* which is obtained by the quasi Newton update.
To overcome the shortcoming, in this paper, an algorithm is proposed for the minimization
of a smooth function subject to smooth inequality constraints. This algorithm is based on
the method in [12]. Our main work is to modify this method slightly for obtaining the global
convergence under some weaker conditions. Comparing with the method in [12], our method is
implementable and globally convergent without assuming the uniformly positive definiteness of
H* and the linear independence of the gradients of active constrained functions at the solution.
In particular, for the superlinear convergence of the algorithm we used the same conditions as
the method in [12].

In this paper, we use the Fischer-Burmeister function [2] as the following:

Y(a,b) =Va®>+ b —a—0.

Let ¢i(z,A) = ¥((—gi(x)), Ni), 1 <i<m, ®1(z,A) = (d1(z,\)- --d)m(a:,)\))T. We denote
®(z,\) = (VoL(z,\)T, (@1 (2, \)T)7T, Clearly, the KKT point conditions of (2) are equiva-
lently reformulated as the condition ®(x,\) = 0.

Let Iy (z, A) = {il(gi(x), Ai) # (0,0)} and Io(x, A) = {i|(gi(x), \i) = (0,0)}. If j € Li(z,N),
then we denote,

9i L (2 ) = A
ey Y PR v

We have V,¢; = ¢;Vg;(z) and Vy¢; = vje; where e; = (0,---,0,1,0---,0)7 € R™ is the jth
column of the unit matrix, its jth element is 1, and other elements are 0. If j € Iy(z,\), then
we denote

fj(l',A) = —1.

Ej(x>>‘):1_\/§/2; ’YJZ’YJ(I.)A):_1+\/§/2'

We have {;Vg;(z) € 0.¢;(z, ) and vje; € Or¢;(x, A). Clearly, f? + 7]2 >3-2V2>0.

The paper is organized as follows. In Section 2, we propose a QP free feasible method. In
Section 3, we show that the algorithm is well defined. In Section 4 and Section 5, we discuss the
conditions of the global convergence and superlinear convergence of the algorithm, respectively.
In Section 6, we give a brief discussion and some numerical tests.

2. Algorithm
In the following algorithm 2.1, let §Jk = &z, p*) and Vi = v @k, k), n;? =—4/ —27;?,

v (Vi Vb _( HN ek, el
S\ VS V) T\ diag(€)(VGM)T diag(n* — ) )

where I, is the n order unit matrix, &f = c;min{1,||®*||"}, ®* = ®(z*, \*), A\* is obtained
in Algorithm 2.1, ¢; € (0,1), diag(&¥) or diag(n® — c*) denotes the diagonal matrix whose jth



