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Abstract

Some characterizations for symmetric multistep Runge-Kutta(RK) methods are ob-
tained. Symmetric two-step RK methods with one and two-stages are presented. Numer-
ical examples show that symmetry of multistep RK methods alone is not sufficient for
long time integration for reversible Hamiltonian systems. This is an important difference
between one-step and multistep symmetric RK methods.
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1. Introduction

It is well known that symmetric one-step methods have similar good long-time behaviours
to symplectic methods for reversible Hamiltonian systems. Many researches into symmetric
Runge-Kutta methods and symmetric multistep methods have been given (cf.[3-5,7,8,10-14]).
More generally, the definition and some properties of symmetric general linear methods (GLMs)
are also presented by Hairer, Leone[6], Hairer, Lubich, Wanner[7] and Leone[9] who show that
symmetry of linear multistep methods and one-leg methods alone are not sufficient by means
of some numerical experiments. In fact, they define the symmetry of a GLM via its underlying
one-step method.
Definition 1.1[6,9]. A GLM Gh is symmetric, if there exists a finishing procedure Fh, such
that the underlying one-step method Φh is symmetric.

They also give some sufficient conditions under which a GLM(cf.[2,6,9])[
C11 C12

C21 C22

]
(1.1)

is symmetric.
Theorem 1.2[6,9]. If C22 is invertible, and there exist the invertible matrix Q satisfying QS0 =
S0 and a permutation matrix P such that

P−1C11P = C12C
−1
22 C21 − C11, (1.2a)

Q−1C21P = C−1
22 C21, (1.2b)

P−1C12Q = C12C
−1
22 , (1.2c)
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Q−1C22Q = C−1
22 , (1.2d)

then the GLM (1.1) is symmetric, where S0 is the matrix made up of the eigenvectors of C22

with eigenvalue 1, i.e. C22S0 = S0.
As a special case, a multistep Runge-Kutta method(MRKM) can be written as a GLM (cf.

[1,2]) by
C11 = B = [bij ]∈Rs×s, C12 = A = [aij ]∈Rs×r, (1.3a)

C21 =

⎛
⎜⎜⎝

0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0
γ1 γ2 . . . γs

⎞
⎟⎟⎠∈Rr×s, C22 =

⎛
⎜⎜⎝

0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1
α1 α2 . . . αr

⎞
⎟⎟⎠∈Rr×r, (1.3b)

where bij , aij , γi, αi are real constants. Let’s set

γ = (γ1, γ2, . . . , γs)T∈Rs, α = (α1, α2, . . . , αr)T∈Rr.

Furthermore, throughout this paper we always assume that
r∑

j=1

αi = 1,

r∑
j=1

aij = 1, i = 1, 2, . . . , s, (1.4a)

ci �=cj for i �=j, γi �=0, i, j = 1, 2, . . . , s, (1.4b)

where the relation (1.4a) is the preconsistency condition.
In this paper, some characterizations for symmetric MRKMs are obtained. Symmetric

two-step RK methods with one and two-stages are presented. Numerical examples show that
symmetry of MRKMs alone is not sufficient for long time integration for reversible Hamilto-
nian systems. This is an important difference between one-step and multistep symmetric RK
methods.

2. Some Characterizations

Theorem 2.1. If C22 is invertible and the method (1.3) satisfies

α1 = 1, αj = −αr+2−j, j = 2, 3, · · · , r, (2.1a)

γj = γs+1−j , j = 1, 2, · · · , s, (2.1b)

bi,s+1−j + bs+1−i,j = ai1γj , i, j = 1, 2, · · · , s, (2.1c)

aij = ai,r+2−j + ai1αj , ai,r+1 = 0, i = 1, 2, · · · , s, j = 1, 2, · · · , r, (2.1d)

then this method is symmetric.
Proof. Let

P =

⎡
⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
· · · · · · · · · · · ·
1 · · · 0 0

⎤
⎥⎥⎦∈Rs×s, Q =

⎡
⎢⎢⎣

0 · · · 0 1
0 · · · 1 0
· · · · · · · · · · · ·
1 · · · 0 0

⎤
⎥⎥⎦∈Rr×r.

The conclusion follows from Theorem 1.2.
Introduce the following simplifying conditions(cf.[1,9])

B(η) : αT χk = rk − kγT ck−1, k = 1, 2, · · · , η,
C(η) : Aχk = ck − kBck−1, k = 1, 2, · · · , η,
D(η) : kγT Ck−1B = rkγT − γT Ck, k = 1, 2, · · · , η,
E(η) : kAT diag(γ)ck−1 = diag(α)(rke − χk), k = 1, 2, · · · , η,

where C = diag(c),
c = (c1, c2, · · · , cs)T , χ = (0, 1, · · · , r − 1)T ,


